Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase retrieval wavefront sensing based on image fusion and convolutional neural network

Zhou Jing Zhang Xiao-Fang Zhao Yan-Geng

Citation:

Phase retrieval wavefront sensing based on image fusion and convolutional neural network

Zhou Jing, Zhang Xiao-Fang, Zhao Yan-Geng
PDF
HTML
Get Citation
  • The conventional phase retrieval wavefront sensing approaches mainly refer to a series of iterative algorithms, such as G-S algorithms, Y-G algorithms and error reduction algorithms. These methods use intensity information to calculate the wavefront phase. However, most of the traditional phase retrieval algorithms are difficult to meet the real-time requirements and depend on the iteration initial value used in iterative transformation or iterative optimization to some extent, so their practicalities are limited. To solve these problems, in this paper, a phase-diversity phase retrieval wavefront sensing method based on wavelet transform image fusion and convolutional neural network is proposed. Specifically, the image fusion method based on wavelet transform is used to fuse the point spread functions at the in-focus and defocus image planes, thereby simplifying the network inputs without losing the image information. The convolutional neural network (CNN) can directly extract image features and fit the required nonlinear mapping. In this paper, the CNN is utilized to establish the nonlinear mapping between the fusion images and wavefront distortions (represented by Zernike polynomials), that is, the fusion images are taken as the input data, and the corresponding Zernike coefficients as the output data. The network structure of the training in this paper has 22 layers, they are 1 input layer, 13 convolution layers, 6 pooling layers, 1 flatten layer and 1 full connection layer, that is, the output layer. The size of the convolution kernel is 3 × 3 and the step size is 1. The pooling method selects the maximum pooling and the size of the pooling kernel is 2 × 2. The activation function is ReLU, the optimization function is Adam, the loss function is the MSE, and the learning rate is 0.0001. The number of training data is 10000, which is divided into three parts: training set, validation set, and test set, accounting for 80%, 15% and 5% respectively. Trained CNN can directly output the Zernike coefficients of order 4–9 to a high precision, with these fusion images serving as the input, which is more in line with the real-time requirements. Abundant simulation experiments prove that the wavefront sensing precision is root-mean-square(RMS) 0.015λ, when the dynamic range of the wavefront is the aberration of low spatial frequency within 1.1λ of RMS value (i.e. the dynamic range of Zernike coefficients of order 4–9 is $[- 0.5\lambda \,, \, 0.5\lambda]$). In practical application, according to the system aberration characteristics, the number of network output layer units can be changed and the network structure can be adjusted based on the method presented in this paper, thereby training the new network suitable for higher order aberration to realize high-precision wavefront sensing. It is also proved that the proposed method has certain robustness against noise, and when the relative defocus error is within 7.5%, the wavefront sensor accuracy is acceptable. With the improvement of image resolution, the wavefront sensing accuracy is improved, but the number of input data of the network also increases with the sampling rate increasing, and the time cost of network training increases accordingly.
      Corresponding author: Zhang Xiao-Fang, zhangxf@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471039)
    [1]

    Roddier C, Roddier F 1993 Appl. Opt. 32 2992Google Scholar

    [2]

    类维政, 袁吕军, 苏志德, 康燕, 武中华 2020 光学学报 40 1312003-1Google Scholar

    Lei W Z, Yuan L J, Su Z D, Kang Y, Wu Z H 2020 Acta Optica Sin. 40 1312003-1Google Scholar

    [3]

    逯力红, 张伟 2010 应用光学 31 685Google Scholar

    Lu L H, Zhang W 2010 J. Appl. Opt. 31 685Google Scholar

    [4]

    吴宇列, 胡晓军, 戴一帆, 李圣怡 2009 机械工程学报 45 157Google Scholar

    Wu Y L, Hu X J, Dai Y F, Li S Y 2009 Chin. J. Mech. Eng. 45 157Google Scholar

    [5]

    Gerehberg R W, Saxton W O 1972 Optik 35 237Google Scholar

    [6]

    Fienup J R 1982 Appl. Opt. 21 2758Google Scholar

    [7]

    杨国桢, 顾本源 1981 30 410Google Scholar

    Yang G Z, Gu B Y 1981 Acta Phys. Sin. 30 410Google Scholar

    [8]

    Paine S W, Fienup J R 2018 Opt. Lett. 43 1235Google Scholar

    [9]

    Nishizaki Y, Valdivia M, Horisaki R, Kitaguchi K, Saito M, Tanida J, Vera E 2019 Opt. Express 27 240Google Scholar

    [10]

    Andersen T, Owner-Petersen M, Enmark A 2019 Opt. Lett. 44 4618Google Scholar

    [11]

    Ju G H, Qi X, Ma H G, Yan C X 2018 Opt. Express 26 31767Google Scholar

    [12]

    Qi X, Ju G H, Zhang C Y, Xu S Y 2019 Opt. Express 27 26102Google Scholar

    [13]

    毛珩 2008 博士学位论文 (北京: 北京理工大学)

    Mao H 2008 Ph. D. Dissertation (Beijing: Beijing Insitute of Technology) (in Chinese)

    [14]

    王欣 2010 博士学位论文 (北京: 北京理工大学)

    Wang X 2010 Ph. D. Dissertation (Beijing: Beijing Insitute of Technology) (in Chinese)

    [15]

    柏财通, 高志强, 李爱, 崔翛龙 2020 计算机工程Google Scholar

    Bai C T, Gao Z Q, Li A, Cui X L 2020 Comput. Eng.Google Scholar

    [16]

    李彦冬, 郝宗波, 雷航 2016 计算机应用 36 2508Google Scholar

    Li Y D, Hao Z B, Lei H 2016 J. Comput. Appl. 36 2508Google Scholar

    [17]

    徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元 2020 69 014209Google Scholar

    Xu Q W, Wang P P, Zeng Z J, Huang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014209Google Scholar

    [18]

    单宝忠, 王淑岩, 牛憨笨, 刘颂豪 2002 光学精密工程 10 318Google Scholar

    Shan B Z, Wang S Y, Niu H B, Liu S H 2002 Opt. Precis. Eng. 10 318Google Scholar

    [19]

    王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇 2020 69 100701Google Scholar

    Wang C Y, Duan Q Q, Zhou K, Yao J, Su M, Fu Y C, Ji J Y, Hong X, Liu X Q, Wang Z Y 2020 Acta Phys. Sin. 69 100701Google Scholar

    [20]

    Kingma D P, Ba J 2014 Comput. Sci. 1412 6982

    [21]

    闫胜武 2012 硕士学位论文 (兰州: 兰州大学)

    Yan S W 2012 M. S. Thesis (Lanzhou: Lanzhou University) (in Chinese)

    [22]

    孙爱华 2014 硕士学位论文 (青岛: 中国海洋大学)

    Sun A H 2014 M. S. Thesis (Qingdao: Ocean University of China) (in Chinese)

    [23]

    蔡植善, 陈木生 2015 激光与光电子学进展 52 117Google Scholar

    Cai Z S, Chen M S 2015 Las. Optoelect. Prog. 52 117Google Scholar

    [24]

    赵辽英, 马启良, 厉小润 2012 61 194204Google Scholar

    Zhao L Y, Ma Q L, Li X R 2012 Acta Phys. Sin. 61 194204Google Scholar

    [25]

    於时才, 吕艳琼 2009 计算机应用研究 26 390Google Scholar

    Yu S C, Lv Y Q 2009 Appl. Res. Comput. 26 390Google Scholar

  • 图 1  离焦型PDPR法工作原理图

    Figure 1.  Schematic diagram of PDPR (defocus diversity).

    图 2  CNN结构示意图

    Figure 2.  The schematic of CNN structure.

    图 3  基于小波变换机理的图像融合原理

    Figure 3.  Principle of image fusion based on wavelet transform.

    图 4  融合图像示意图 (a) 焦面PSF图像; (b) 离焦面PSF图像; (c) 融合图像; (d) CNN的输入图像(即图(c)中红框内部分)

    Figure 4.  Schematic diagram of fusion image: (a) PSF image of the focal plane; (b) PSF image of the defocal plane; (c) the fusion image; (d) the input image of CNN.

    图 5  10000组随机波前RMS分布图

    Figure 5.  RMS distributions of 10000 random wavefront groups.

    图 6  真实系数与网络预测系数间的标准差统计直方图

    Figure 6.  Statistical histogram of standard deviation between the real coefficient and the network prediction coefficient.

    图 7  测试数据波前传感精度RMS统计直方图

    Figure 7.  RMS statistical histogram of wavefront sensing accuracy of test data.

    图 8  采用不同分辨率图像训练网络时, 波前传感精度RMS统计直方图对比 (a) 图像采样率 64 × 64; (b) 图像采样率128 × 128

    Figure 8.  When image training networks with different resolutions are adopted, the RMS statistical histogram of wavefront sensing precision are compared: (a) Image sampling rate 64 × 64; (b) image sampling rate 128 × 128

    表 1  仿真系统参数

    Table 1.  Simulation system parameters.

    透镜焦距/mm入瞳直径/mm波长/nm离焦距离/mm
    15010632.84
    DownLoad: CSV

    表 2  系统存在不同阶像差时本文方法的波前传感精度

    Table 2.  The wavefront sensing accuracy of the proposed method when the system has different order of aberration.

    像差阶数4—7阶4—8阶4—10阶4—11阶
    传感精度RMS/$\lambda $0.0100.0120.0150.100
    DownLoad: CSV

    表 3  不同离焦量误差下, 本文方法的传感精度

    Table 3.  The sensing accuracy of the proposed method under different defocusing errors.

    相对离焦量误差/%2.55.07.510.0
    传感精度RMS/$\lambda $0.0220.0350.0500.065
    DownLoad: CSV

    表 4  噪声对传感精度的影响

    Table 4.  The influence of noise on the sensing accuracy.

    信噪比/dB5040353025
    传感精度RMS/$\lambda $0.0150.0150.0150.0200.060
    DownLoad: CSV
    Baidu
  • [1]

    Roddier C, Roddier F 1993 Appl. Opt. 32 2992Google Scholar

    [2]

    类维政, 袁吕军, 苏志德, 康燕, 武中华 2020 光学学报 40 1312003-1Google Scholar

    Lei W Z, Yuan L J, Su Z D, Kang Y, Wu Z H 2020 Acta Optica Sin. 40 1312003-1Google Scholar

    [3]

    逯力红, 张伟 2010 应用光学 31 685Google Scholar

    Lu L H, Zhang W 2010 J. Appl. Opt. 31 685Google Scholar

    [4]

    吴宇列, 胡晓军, 戴一帆, 李圣怡 2009 机械工程学报 45 157Google Scholar

    Wu Y L, Hu X J, Dai Y F, Li S Y 2009 Chin. J. Mech. Eng. 45 157Google Scholar

    [5]

    Gerehberg R W, Saxton W O 1972 Optik 35 237Google Scholar

    [6]

    Fienup J R 1982 Appl. Opt. 21 2758Google Scholar

    [7]

    杨国桢, 顾本源 1981 30 410Google Scholar

    Yang G Z, Gu B Y 1981 Acta Phys. Sin. 30 410Google Scholar

    [8]

    Paine S W, Fienup J R 2018 Opt. Lett. 43 1235Google Scholar

    [9]

    Nishizaki Y, Valdivia M, Horisaki R, Kitaguchi K, Saito M, Tanida J, Vera E 2019 Opt. Express 27 240Google Scholar

    [10]

    Andersen T, Owner-Petersen M, Enmark A 2019 Opt. Lett. 44 4618Google Scholar

    [11]

    Ju G H, Qi X, Ma H G, Yan C X 2018 Opt. Express 26 31767Google Scholar

    [12]

    Qi X, Ju G H, Zhang C Y, Xu S Y 2019 Opt. Express 27 26102Google Scholar

    [13]

    毛珩 2008 博士学位论文 (北京: 北京理工大学)

    Mao H 2008 Ph. D. Dissertation (Beijing: Beijing Insitute of Technology) (in Chinese)

    [14]

    王欣 2010 博士学位论文 (北京: 北京理工大学)

    Wang X 2010 Ph. D. Dissertation (Beijing: Beijing Insitute of Technology) (in Chinese)

    [15]

    柏财通, 高志强, 李爱, 崔翛龙 2020 计算机工程Google Scholar

    Bai C T, Gao Z Q, Li A, Cui X L 2020 Comput. Eng.Google Scholar

    [16]

    李彦冬, 郝宗波, 雷航 2016 计算机应用 36 2508Google Scholar

    Li Y D, Hao Z B, Lei H 2016 J. Comput. Appl. 36 2508Google Scholar

    [17]

    徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元 2020 69 014209Google Scholar

    Xu Q W, Wang P P, Zeng Z J, Huang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014209Google Scholar

    [18]

    单宝忠, 王淑岩, 牛憨笨, 刘颂豪 2002 光学精密工程 10 318Google Scholar

    Shan B Z, Wang S Y, Niu H B, Liu S H 2002 Opt. Precis. Eng. 10 318Google Scholar

    [19]

    王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇 2020 69 100701Google Scholar

    Wang C Y, Duan Q Q, Zhou K, Yao J, Su M, Fu Y C, Ji J Y, Hong X, Liu X Q, Wang Z Y 2020 Acta Phys. Sin. 69 100701Google Scholar

    [20]

    Kingma D P, Ba J 2014 Comput. Sci. 1412 6982

    [21]

    闫胜武 2012 硕士学位论文 (兰州: 兰州大学)

    Yan S W 2012 M. S. Thesis (Lanzhou: Lanzhou University) (in Chinese)

    [22]

    孙爱华 2014 硕士学位论文 (青岛: 中国海洋大学)

    Sun A H 2014 M. S. Thesis (Qingdao: Ocean University of China) (in Chinese)

    [23]

    蔡植善, 陈木生 2015 激光与光电子学进展 52 117Google Scholar

    Cai Z S, Chen M S 2015 Las. Optoelect. Prog. 52 117Google Scholar

    [24]

    赵辽英, 马启良, 厉小润 2012 61 194204Google Scholar

    Zhao L Y, Ma Q L, Li X R 2012 Acta Phys. Sin. 61 194204Google Scholar

    [25]

    於时才, 吕艳琼 2009 计算机应用研究 26 390Google Scholar

    Yu S C, Lv Y Q 2009 Appl. Res. Comput. 26 390Google Scholar

  • [1] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] Wang Zi-Shuo, Liu Lei, Liu Chen-Bo, Liu Ke, Zhong Zhi, Shan Ming-Guang. Fast phase unwrapping using digital differentiation-integration method. Acta Physica Sinica, 2023, 72(18): 184201. doi: 10.7498/aps.72.20230473
    [3] Shan Ming-Guang, Liu Xiang-Yu, Pang Cheng, Zhong Zhi, Yu Lei, Liu Bin, Liu Lei. Off-axis digital holographic decarrier phase recovery algorithm combined with linear regression. Acta Physica Sinica, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [4] Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang. Accelerating super-resolution ultrasound localization microscopy using generative adversarial net. Acta Physica Sinica, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [5] Zhang Hang-Ying, Wang Xue-Qi, Wang Hua-Ying, Cao Liang-Cai. Advanced Retinex-Net image enhancement method based on value component processing. Acta Physica Sinica, 2022, 71(11): 110701. doi: 10.7498/aps.71.20220099
    [6] Zhao Wei-Rui, Wang Hao, Zhang Lu, Zhao Yue-Jin, Chu Chun-Yan. High-precision co-phase method for segments based on a convolutional neural network. Acta Physica Sinica, 2022, 71(16): 164202. doi: 10.7498/aps.71.20220434
    [7] Wu Di, Jiang Zi-Zhen, Yu Huan-Huan, Zhang Chen-Shuang, Zhang Jiao, Lin Dan-Ying, Yu Bin, Qu Jun-Le. Quantitative phase microscopy imaging based on fractional spiral phase plate. Acta Physica Sinica, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [8] Precise phase retrieval with carrier removal from single off-axis hologram by linear regression. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211509
    [9] Huang Wei-Jian, Li Yong-Tao, Huang Yuan. Prediction of chaotic time series using hybrid neural network and attention mechanism. Acta Physica Sinica, 2021, 70(1): 010501. doi: 10.7498/aps.70.20200899
    [10] Wang Chen-Yang, Duan Qian-Qian, Zhou Kai, Yao Jing, Su Min, Fu Yi-Chao, Ji Jun-Yang, Hong Xin, Liu Xue-Qin, Wang Zhi-Yong. A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm. Acta Physica Sinica, 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [11] Sun Teng-Fei, Lu Peng, Zhuo Zhuang, Zhang Wen-Hao, Lu Jing-Qi. Dual-channel quantitative phase microscopy based on a single cube beamsplitter interferometer. Acta Physica Sinica, 2018, 67(14): 140704. doi: 10.7498/aps.67.20172722
    [12] Pan Xue-Mei, Meng Xiang-Feng, Yang Xiu-Lun, Wang Yu-Rong, Peng Xiang, He Wen-Qi, Dong Guo-Yan, Chen Hong-Yi. Asymetric multiple-image authentication based on complex amplitude information multiplexing and RSA algorithm. Acta Physica Sinica, 2015, 64(11): 110701. doi: 10.7498/aps.64.110701
    [13] Feng Xin, Li Chuan, Hu Kai-Qun. Infrared and visible image fusion based on deep Boltzmann model. Acta Physica Sinica, 2014, 63(18): 184202. doi: 10.7498/aps.63.184202
    [14] Liu Hong-Zhan, Ji Yue-Feng. An ameliorated fast phase retrieval iterative algorithm based on the angular spectrum theory. Acta Physica Sinica, 2013, 62(11): 114203. doi: 10.7498/aps.62.114203
    [15] Zhao Wen-Da, Zhao Jian, Xu Zhi-Jun. Variational multi-source image fusion based on the structure tensor. Acta Physica Sinica, 2013, 62(21): 214204. doi: 10.7498/aps.62.214204
    [16] Yang Zhen-Ya, Zheng Chu-Jun. Phase retrieval of pure phase object based on compressed sensing. Acta Physica Sinica, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203
    [17] Gan Tian, Feng Shao-Tong, Nie Shou-Ping, Zhu Zhu-Qing. Image fusion algorithm based on block-DCT in wavelet domain. Acta Physica Sinica, 2011, 60(11): 114205. doi: 10.7498/aps.60.114205
    [18] Zhang Chuang, Bai Lian-Fa, Zhang Yi. Method of fusing dual-spectrum low light Level images based on gray-scale spatial correlation. Acta Physica Sinica, 2007, 56(6): 3227-3233. doi: 10.7498/aps.56.3227
    [19] Huang Yan-Ping, Qi Chun-Yuan. Measurement of refractive index profile of holey fiber using quantitative phase tomography. Acta Physica Sinica, 2006, 55(12): 6395-6398. doi: 10.7498/aps.55.6395
    [20] Yu Bin, Peng Xiang, Tian Jin-Dong, Niu Han-Ben. Phase retrieval for hard x-ray in-line phase contrast imaging. Acta Physica Sinica, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
Metrics
  • Abstract views:  8251
  • PDF Downloads:  205
  • Cited By: 0
Publishing process
  • Received Date:  18 August 2020
  • Accepted Date:  23 September 2020
  • Available Online:  22 February 2021
  • Published Online:  05 March 2021

/

返回文章
返回
Baidu
map