Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Removal of background white light in coherent-dispersion spectrometer based on convolutional neural network

WU Yinhua CHONG Zhe ZHU Pengfei CHEN Shasha ZHOU Shun

Citation:

Removal of background white light in coherent-dispersion spectrometer based on convolutional neural network

WU Yinhua, CHONG Zhe, ZHU Pengfei, CHEN Shasha, ZHOU Shun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Coherent-dispersion spectrometer (CODES) is an exoplanet detection instrument based on the radial velocity (RV) method. It detects changes in RV by measuring the Doppler phase shift of the interference spectrum of stellar absorption line. However, the background white light in the stellar absorption spectrum disturbs the phase analysis of CODES, which leads to phase error and seriously affects the accuracy of RV inversion. The larger the cosine amplitude of the background white light, the greater the error is. In order to effectively remove background white light and correct Doppler phase shift, a background white light prediction network (BWP-Net) is proposed based on the U-Net architecture by utilizing the principle and data characteristics of CODES in this study. To accelerate the convergence of the BWP-Net model, the interference spectrum of absorption line from CODES and the ideal interference spectrum of background white light are used as inputs and labels for the model after image normalization, while the model output becomes the predicted interference spectrum of background white light after inverse normalization. The BWP-Net consists of symmetric 6-layer encoding path and decoding path. First, in the encoding path, different levels of features are extracted step by step from the interference spectrum of stellar absorption line through combination of multi-channel convolution and depthwise separable convolution, extracting features effectively while reducing computational costs reasonably. In each convolution layer, spatial downsampling is performed through convolution with a stride of 2 and the number of feature channels is increased until the fourth layer, thus various features, from simple to abstract, local to global, are extracted for the preparation of image reconstruction in the decoding path. Second, in the decoding path, the image details are gradually reconstructed from the features extracted through several layers of attention transposed-convolution. In each layer of attention transposed-convolution, spatial upsampling is performed based on the fusion of shallow features and deep features through matrix addition and the number of feature channels are reduced, at the same time attention of different levels is paid to the features through a learnable weight matrix, so as to suppress the absorption line information gradually during image reconstruction. At the last layer of the decoding path, the sigmoid activation function is used to control the model output in the 0-1 interval, making it easier to denormalize. Finally, a region weighted loss function that combines mean-square error and multi-scale structural similarity is used for training so as to consider pixel level differences and structural similarity between the model output and the labels, while enhancing the suppression of absorption lines in the central region of the interference spectrum through region weighting. And the output of BWP-Net is the prediction of the interference spectrum of background white light, which is subtracted from the interference spectrum of stellar absorption lines for phase analysis. The experimental results show that under different absorption lines, different fixed optical path differences, and different RVs, after removing background white light from the output of BWP-Net, the RV inversion error is less than 1 m/s, mainly concentrated in the region of 0–0.4 m/s, with an average error of 0.2353 m/s and a root mean square error of 0.3769 m/s. And the distribution of RV inversion error is relatively uniform under different parameter conditions, the median error is less than 0.25 m/s at different absorption line wavelengths, and less than 0.2 m/s at different fixed optical path differences. Thes indicate that BWP-Net not only predicts background white light accurately, but also has good stability and robustness, providing strong support for high-precision and stable RV inversion for CODES.
  • 图 1  CODES (a)工作原理 (b)实验装置

    Figure 1.  CODES: (a) Schematic diagram; (b) experimental setup.

    图 2  S1int的余弦振幅

    Figure 2.  Cosine amplitude of S1int.

    图 3  背景白光预测网络架构

    Figure 3.  Background White light prediction network (BWP-Net) architecture.

    图 4  不同层数模型损失对比结果

    Figure 4.  Comparison result of loss between models with different layers.

    图 5  吸收线干涉光谱

    Figure 5.  Interference spectrum of absorption line.

    图 6  背景白光干涉光谱

    Figure 6.  Interference spectrum of background white light.

    图 7  BWP-Net模型输出与标签对比

    Figure 7.  Comparison of BWP-Net output and label.

    图 8  不同λa下视向速度误差分布

    Figure 8.  Distribution of radial velocity error with different λa.

    图 11  不同t下视向速度均方根误差

    Figure 11.  RMSE of radial velocity error with different t.

    图 9  不同λa下视向速度均方根误差

    Figure 9.  RMSE of radial velocity error with different λa.

    图 10  不同t下视向速度误差分布

    Figure 10.  Distribution of radial velocity error with different t.

    图 12  特征和参数可视化 (a)编码路径特征; (b)解码路径特征; (c)注意力权重

    Figure 12.  Visualization of features and parameters: (a) Encoder features; (b) decoder features; (c) attention weight.

    表 1  v1 = 0 m/s, v2 = 1000 m/s时, 不同光程差下相位差解析结果

    Table 1.  Phase shift with different OPD at v1 = 0 m/s and v2 = 1000 m/s.

    t/mmΔΦ/radΔΦabsorb/radΔvabsorb/(m·s–1)ΔΦemission/radΔvemission/(m·s–1)
    2.280.0195π1.9878π10200.420.0195π999.69
    3.370.0288π0.0292π1012.250.0288π999.68
    3.380.0289π0.0287π991.860.0289π999.68
    3.390.0290π0.0282π972.480.0290π999.69
    4.660.0398π0.0183π458.450.0398π999.69
    6.760.0578π0.0579π1001.500.0578π999.70
    7.800.0667π0.0880π1319.800.0666π999.71
    11.150.0953π0.0916π960.960.0953π999.75
    19.500.1667π0.1666π999.820.1666π999.87
    DownLoad: CSV

    表 2  测试集部分数据分析结果

    Table 2.  Analysis results of partial data in the test set.

    λa/nmΔλa/nmAt/mmv1/(m·s–1)v2(/m·s–1)Δvt/(m·s–1)Error/(m·s–1)
    7100.020.911.981800190099.99910.0009
    7300.030.912.0013001500199.99880.0012
    7400.020.912.0115001700200.00060.0006
    8200.030.912.0216001900300.00360.0036
    7500.020.812.0210001400400.00340.0034
    7800.030.712.0212001700499.99010.0099
    8600.020.912.0010001600599.99520.0048
    7600.020.911.9813002000699.99880.0012
    7700.020.711.990800799.75360.2464
    8700.020.911.9911002000899.95070.0493
    8300.030.712.011001100999.83830.1617
    6900.020.812.01011001099.82830.1717
    8000.030.812.00017001699.78220.2178
    8500.030.911.98012001200.06310.0631
    7900.030.712.0210014001299.89810.1019
    7200.020.812.0110015001400.01730.0173
    6600.020.811.98015001499.98270.0173
    6700.030.812.0210017001600.31130.3113
    8400.030.911.9810018001700.10900.1090
    7000.020.912.0110019001800.14030.1403
    8100.030.912.02019001900.09230.0923
    6800.020.712.01020002000.42000.4200
    DownLoad: CSV
    Baidu
  • [1]

    Bailey I J, Mateo M, White J R, Shectman A S, Crane D J 2018 MNRAS 475 1609Google Scholar

    [2]

    Vanzi L, Zapata A, Flores M, Brahm R, Pinto T M, Rukdee S, Jones M, Ropert S, Shen T, Ramirez S, Suc V, Jordán A, Espinoza N 2018 MNRAS 477 5041Google Scholar

    [3]

    Mamajek E E, Burgasser J A 2025 Appita J. 169 77

    [4]

    Laliotis K, Burt A J, Mamajek E E, Li Z, Perdelwitz V, Zhao J, Butler P R, Holden B, Rosenthal L, Fulton J B, Feng F, Kane R S, Bailey J, Carter B, Crane D J, Furlan E , Gnilka L C, Howell B S, Laughlin G, Shectman A S, Teske K J, Tinney G C, Vogt S S, Wang X S, Wittenmyer A R 2023 Appita J. 165 176

    [5]

    The Extrasolar Planets Encyclopedia [2025-1-17]

    [6]

    Wang X, Chang L, Wang L, Ji H, Xian H, Tang Z, Xin Y, Wang C, He S, Zhang J, Lun B, Wei K, Li X, Jiang X, Wang H, Li H, Mao J 2020 Res. Astron. Astrophys. 20 032Google Scholar

    [7]

    Xiao G, Teng H, Zhou J, Sato B, Liu Y, Bi S, Takarada T, Kuzuhara M, Hon M, Wang L, Omiya M, Harakawa H, Zhao F, Zhao G, Kambe E, Izumiura H, Ando H, Noguchi K, Wang W, Zhai M, Song N, Yang C, Li T, Brandt D T, Yoshida M, Yoichi Itoh, Kokubo E 2024 Appita J. 167 59

    [8]

    Luo X, Gu S, Xiang Y, Cameron A C, Kim K, Han I, Lee B 2022 Appita J. 163 287

    [9]

    Wang C, Bai J, Fan Y, Mao J, Chang L, Xin Y, Zhang J, Lun B, Wang J, Zhang X, Ying M, Lu K, Wang X, Ji K, Xiong D, Yu X, Ding X, Ye K, Xing L, Yi W, Xu L, Zheng X, Feng Y, He S, Wang X, Liu Z, Chen D, Xu J, Qin S, Zhang R, Tan H, Li Z, Lou K, Li J, Liu W 2019 Res. Astron. Astrophys. 19 149Google Scholar

    [10]

    Grieves N, Ge J, Thomas N, Ma B, Sithajan S, Ghezzi L, Kimock B, Willis K, Lee D N, Brian Lee, Fleming W S, Agol E, Troup N, Paegert M, Schneider P D, Stassun K, Varosi F, Zhao B, Jian L, Li R, Mello P F G, Bizyaev D, Pan K, Dutra-Ferreira L, Lorenzo-Oliveira D, Santiago X B, Costa N L, Maia G A M, Ogando C L R, Peloso F E 2017 MNRAS 467 4264Google Scholar

    [11]

    Grieves N, Ge J, Thomas N, Willis K, Ma B, Lorenzo-Oliveira D, Queiroz A B A, Ghezzi L, Chiappini C, Anders F, Dutra-Ferreira L, Mello P F G, Santiago X B, Costa N L, Ogando C L R, Peloso F E, Tan C J, Schneider P D, Pepper J, Stassun G K, Zhao B, Bizyaev D, Pan K 2018 MNRAS 481 3244Google Scholar

    [12]

    Wei R Y, Chen S S, Hu B L, Yan Q Q, Wu Y H, Wang P C 2020 Publ. Astron. Soc. Pac. 132 015003Google Scholar

    [13]

    Chen S, Wei R, Xie Z, Wu Y, Di L, Wang F, Zhai Y 2021 Appl. Opt. 60 4535Google Scholar

    [14]

    Guan S, Liu B, Chen S, Wu Y, Wang F, Liu X, Wei R 2024 Sci. Rep. 14 17445Google Scholar

    [15]

    Wu Y, Chen S, Wang P, Zhou S, Feng Y, Zhang W, Wei R 2021 MNRAS 503 3032Google Scholar

    [16]

    Guan S, Liu B, Chen S, Wu Y, Wang F, Wang S, Liu X, Wei R 2024 Opt. Commun. 561 130443Google Scholar

    [17]

    周静, 张晓芳, 赵延庚 2021 70 054201Google Scholar

    Zhou J, Zhang X F, Zhao Y G 2021 Acta Phys. Sin. 70 054201Google Scholar

    [18]

    朱琦, 许多, 张元军, 李玉娟, 王文, 张海燕 2022 71 244301Google Scholar

    Zhu Q, Xu D, Zhang Y J, Li Y J, Wang W, Zhang H Y 2022 Acta Phys. Sin. 71 244301Google Scholar

    [19]

    Long J, Shelhamer E, Darrell T 2015 arXiv: 1411.4038v2 [cs. CV]

    [20]

    Roy S K, Krishna G, Dubey S R, Chaudhuri B B 2020 IEEE Geosci. Remote Sens. Lett. 17 277Google Scholar

    [21]

    Ronneberger O, Fischer P, Brox T 2015 Medical Image Computing and Computer -Assisted Intervention Munich, Germany, October 5—9, 2015 p234

    [22]

    Nehaa F, Bhatia D, Shuklab K D, Dalvia M S, Mantzouc N, Shubbar S 2024 arXiv: 2412.02242v1 [eess. IV]

    [23]

    Siddique N, Sidike P, Elkin C, Devabhaktuni V 2020 arXiv: 2011.01118 [eess. IV]

    [24]

    Isola P, Zhu J, Zhou T, Efros A A 2018 arXiv: 1611.07004v3 [cs. CV]

    [25]

    Basu A, Mondal R, Bhowmik S, Sarkara R 2020 J. Electron. Imaging 29 063019

    [26]

    Hu Y, Tang Z, Hu J, Lu X, Zhang W, Xie Z, Zuo H, Li L, Huang Y 2023 Opt. Commun. 540 129488Google Scholar

  • [1] LIU Yujie, WANG Zhenyu, LEI Hang, ZHANG Guoyu, XIAN Jiawei, GAO Zhibin, SUN Jun, SONG Haifeng, DING Xiangdong. Machine Learning-Driven Elasticity Prediction in Advanced Inorganic Materials via Convolutional Neural Networks. Acta Physica Sinica, doi: 10.7498/aps.74.20250127
    [2] WANG Xiang, ZHOU Yishen, ZHANG Xuange, CHEN Xihao. Convolutional network single-pixel imaging with fusion attention mechanism. Acta Physica Sinica, doi: 10.7498/aps.74.20250010
    [3] JIANG Tingshuai, RUAN Yirun, LI Hai, BAI Liang, YUAN Yifei, YU Tianyuan. Entropy-based weighted multi-channel convolutional neural network method for node importance assessment. Acta Physica Sinica, doi: 10.7498/aps.74.20250329
    [4] Zhu Qi, Xu Duo, Zhang Yuan-Jun, Li Yu-Juan, Wang Wen, Zhang Hai-Yan. Ultrasonic detection of white etching defect based on convolution neural network. Acta Physica Sinica, doi: 10.7498/aps.71.20221504
    [5] Zhan Qing-Liang, Bai Chun-Jin, Ge Yao-Jun. Deep learning representation of flow time history for complex flow field. Acta Physica Sinica, doi: 10.7498/aps.71.20221314
    [6] Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang. Accelerating super-resolution ultrasound localization microscopy using generative adversarial net. Acta Physica Sinica, doi: 10.7498/aps.71.20220954
    [7] Zhao Wei-Rui, Wang Hao, Zhang Lu, Zhao Yue-Jin, Chu Chun-Yan. High-precision co-phase method for segments based on a convolutional neural network. Acta Physica Sinica, doi: 10.7498/aps.71.20220434
    [8] Zhou Jing, Zhang Xiao-Fang, Zhao Yan-Geng. Phase retrieval wavefront sensing based on image fusion and convolutional neural network. Acta Physica Sinica, doi: 10.7498/aps.70.20201362
    [9] Huang Wei-Jian, Li Yong-Tao, Huang Yuan. Prediction of chaotic time series using hybrid neural network and attention mechanism. Acta Physica Sinica, doi: 10.7498/aps.70.20200899
    [10] Xu Qi-Wei, Wang Pei-Pei, Zeng Zhen-Jia, Huang Ze-Bin, Zhou Xin-Xing, Liu Jun-Min, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Extracting atmospheric turbulence phase using deep convolutional neural network. Acta Physica Sinica, doi: 10.7498/aps.69.20190982
    [11] Wang Chen-Yang, Duan Qian-Qian, Zhou Kai, Yao Jing, Su Min, Fu Yi-Chao, Ji Jun-Yang, Hong Xin, Liu Xue-Qin, Wang Zhi-Yong. A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm. Acta Physica Sinica, doi: 10.7498/aps.69.20191935
    [12] Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue. Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica, doi: 10.7498/aps.64.110503
    [13] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, doi: 10.7498/aps.57.6120
    [14] Zhang Jun-Feng, Hu Shou-Song. Chaotic time series prediction based on RBF neural networks with a new clustering algorithm. Acta Physica Sinica, doi: 10.7498/aps.56.713
    [15] Yu A-Long. Research on the amplitude frequency characteristics compensation based on wavelet neural network for vibration velocity transducer. Acta Physica Sinica, doi: 10.7498/aps.56.3166
    [16] Xing Hong-Yan, Xu Wei. The neural networks method for detecting weak signals under chaotic background. Acta Physica Sinica, doi: 10.7498/aps.56.3771
    [17] Hu Yu-Xia, Gao Jin-Feng. A neuro-fuzzy method for predicting the chaotic time series. Acta Physica Sinica, doi: 10.7498/aps.54.5034
    [18] Li Jun, Liu Jun-Hua. On the prediction of chaotic time series using a new generalized radial basis function neural networks. Acta Physica Sinica, doi: 10.7498/aps.54.4569
    [19] Tan Wen, Wang Yao-Nan, Zhou Shao-Wu, Liu Zu-Run. Prediction of the chaotic time series using neuro-fuzzy networks. Acta Physica Sinica, doi: 10.7498/aps.52.795
    [20] Yu Li-juan, Zhu Chang-chun. Neural Networks Models on Threshold Electric Field of Field Emission. Acta Physica Sinica, doi: 10.7498/aps.49.170
Metrics
  • Abstract views:  307
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  20 January 2025
  • Accepted Date:  26 February 2025
  • Available Online:  26 March 2025

/

返回文章
返回
Baidu
map