Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Convolutional network single-pixel imaging with fusion attention mechanism

WANG Xiang ZHOU Yishen ZHANG Xuange CHEN Xihao

Citation:

Convolutional network single-pixel imaging with fusion attention mechanism

WANG Xiang, ZHOU Yishen, ZHANG Xuange, CHEN Xihao
cstr: 32037.14.aps.74.20250010
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • This paper presents a novel convolutional neural network-based single-pixel imaging method that integrates a physics-driven fusion attention mechanism. By incorporating a module that combines both channel attention mechanism and spatial attention mechanism into a randomly initialized convolutional network, the method utilizes the physical model constraints of single-pixel imaging to achieve high-quality image reconstruction. Specifically, the spatial and channel attention mechanism are combined into a single module and introduced into various layers of a multi-scale U-net convolutional network. In the spatial attention mechanism, we extract the attention weight features of each spatial region of the pooled feature map by using convolution. In the channel attention mechanism, we pool the three-dimensional feature map into a single-channel signal and input it into a two-layer fully connected network to obtain the attention weight information for each channel. This approach not only uses the critical weighting information provided by the attention mechanism in the three-dimensional data cube but also fully integrates the powerful feature extraction capabilities of the U-net network across different spatial frequencies. This innovative method can effectively capture image details, suppress background noise, and improve image reconstruction quality. During the experimental phase, we employ the optical path of single-pixel imaging to acquire bucket signals for two target images, "snowflake" and "basket". By inputting any noisy image into a randomly initialized neural network with attention mechanism, and using the mean square error between simulated bucket signal and actual bucket signal, we physically constrain the convergence of the network. Ultimately, we achieve a reconstructed image that adheres to the physical model. The experimental results demonstrate that under low sampling rate conditions, the scheme of integrating the attention mechanism can not only intuitively reconstruct image details better, but also demonstrate significant advantages in quantitative evaluation metrics such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), confirming its effectiveness and potential application in single-pixel imaging.
      Corresponding author: CHEN Xihao, xi-haochen@163.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0504302).
    [1]

    Kilcullen P, Ozaki T, Liang J 2022 Nat. Commun. 13 7879Google Scholar

    [2]

    Hahamovich E, Monin S, Hazan Y, Rosenthal A 2021 Nat. Commun. 12 4516Google Scholar

    [3]

    Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar

    [4]

    Ferri F, Magatti D, Gatti A, Bache M, Brambilla E, Lugiato L 2005 Phys. Rev. Lett. 94 183602Google Scholar

    [5]

    Wang F, Wang C, Deng C, Han S, Situ G 2022 Photon. Res. 10 104Google Scholar

    [6]

    Pan L, Shen Y, Qi J, Shi J, Feng X 2023 Opt. Express 31 13943Google Scholar

    [7]

    Song K, Bian Y, Wang D, Li R, Wu K, Liu H, Qin C, Hu J, Xiao L 2024 Laser & Photonics Rev. published online 2401397

    [8]

    Zhao X S, Yu C, Wang C, Li T, Liu B, Lu H, Zhang R, Dou X, Zhang J, Pan J W 2024 Appl. Phys. Lett. 125 211103Google Scholar

    [9]

    Karpowicz N, Zhong H, Xu J, Lin K I, Hwang J S, Zhang X C 2005 Semicond. Sci. Tech. 20 S293Google Scholar

    [10]

    Simões M, Vaz P, Cortez A F V 2024. arXiv: 2411.03907 [physics.ins-det]

    [11]

    Shwartz S 2021 Sci. Bull. 66 857Google Scholar

    [12]

    Olbinado M P, Paganin D M, Cheng Y, Rack A 2021 Optica 8 1538Google Scholar

    [13]

    Clemente P, Durán V, Tajahuerce E, Andrés P, Climent V, Lancis J 2013 Opt. Lett. 38 2524Google Scholar

    [14]

    Jiang W, Yin Y, Jiao J, Zhao X, Sun B 2022 Photon. Res. 10 2157Google Scholar

    [15]

    Gibson G M, Sun B, Edgar M P, Phillips D B, Hempler N, Maker G T, Malcolm G P A, Padgett M J 2017 Opt. Express 25 2998Google Scholar

    [16]

    Zhou L, Xiao Y, Chen W 2023 Opt. Express 31 23027Google Scholar

    [17]

    Xu Y, Lu L, Saragadam V, Kelly K F 2024 Nat. Commun. 15 1456Google Scholar

    [18]

    Li J, Li X, Yardimci N T, Hu J, Li Y, Chen J, Hung Y C, Jarrahi M, Ozcan A 2023 Nat. Commun. 14 6791Google Scholar

    [19]

    Li S, Liu X, Xiao Y, Ma Y, Yang J, Zhu K, Tian X 2023 Opt. Express 31 4712Google Scholar

    [20]

    Zheng P, Dai Q, Li Z, Ye Z, Xiong J, Liu H C, Zheng G, Zhang S 2021 Sci. Adv. 7 eabg0363Google Scholar

    [21]

    Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110Google Scholar

    [22]

    López-García L, Cruz-Santos W, GarcíaArellano A, Filio-Aguilar P, Cisneros-Martínez J A, Ramos-García R 2022 Opt. Express 30 13714Google Scholar

    [23]

    Zhang Z, Ma X, Zhong J 2015 Nat. Commun. 6 6225Google Scholar

    [24]

    Donoho D 2006 IEEE Trans. Inf. Theory 52 1289Google Scholar

    [25]

    Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE Signal Process Mag. 25 83Google Scholar

    [26]

    Huang L, Luo R, Liu X, Hao X 2022 Light Sci. Appl. 11 61Google Scholar

    [27]

    Figueiredo M A T, Nowak R D, Wright S J 2007 IEEE J. Sel. Top. Signal Process. 11 586

    [28]

    Pioneers A 2024 Nat. Mach. Intell. 6 1271Google Scholar

    [29]

    查文舒, 李道伦, 沈路航, 张雯, 刘旭亮 2022 力学学报 54 543Google Scholar

    Zha W S, Li D L, Shen L H, Zhang W, Liu X L 2022 Chinese Journal of Theoretical and Applied Mechanics 54 543Google Scholar

    [30]

    Zhang H, Wang J, Zhang Y, Du X, Wu H, Zhang T 2024 Astronomical Techniques and Instruments 1 1

    [31]

    van Leeuwen C, Podareanu D, Codreanu V, Cai M X, Berg A, Zwart S P, Stoffer R, Veerman M, van Heerwaarden C, Otten S, Caron S, Geng C, Ambrosetti F, Bonvin A M J J 2020 arXiv: 2004.03454[cs.CE]

    [32]

    Barbastathis G, Ozcan A, Situ G 2019 Optica 6 921Google Scholar

    [33]

    Ruget A, Moodley C, Forbes A, Leach J 2024 Opt. Express 32 41057Google Scholar

    [34]

    Wetzstein G, Ozcan A, Gigan S, Fan S, Englund D, Soljačić M, Denz C, Miller D A B, Psaltis D 2020 Nature 588 39Google Scholar

    [35]

    Lyu M, Wang W, Wang H, Wang H, Li G, Chen N, Situ G 2017 Sci. Rep. 7 17865Google Scholar

    [36]

    Zhang X, Deng C, Wang C, Wang F, Situ G 2023 ACS Photonics 10 2363Google Scholar

    [37]

    Li J, Li Y, Li J, Zhang Q, Li J 2020 Opt. Express 28 22992Google Scholar

    [38]

    Wang F, Wang C, Chen M, Gong W, Zhang Y, Han S, Situ G 2022 Light Sci. Appl. 11 1Google Scholar

    [39]

    Peng L, Xie S, Qin T, Cao L, Bian L 2023 Opt. Lett. 48 2527Google Scholar

    [40]

    Liu H, Bian L, Zhang J 2023 Opt. Laser Technol. 157 108600Google Scholar

    [41]

    Liu X, Han T, Zhou C, Huang J, Ju M, Xu B, Song L 2023 Opt. Express 31 9945Google Scholar

    [42]

    Hammernik K, Küstner T, Yaman B, Huang Z, Rueckert D, Knoll F, Akçakaya M 2023 IEEE Signal Process Mag. 40 98

    [43]

    Wang P, Chen P, Yuan Y, Liu D, Huang Z, Hou X, Cottrell G W 2017. arXiv: 1702.08502[cs.CV]

    [44]

    Ulyanov D, Vedaldi A, Lempitsky V 2020 IJCV 128 1867Google Scholar

    [45]

    Ren W, Nie X, Peng T, Scully M O 2022 Opt. Express 30 47921Google Scholar

    [46]

    Zhang H, Sindagi V, Patel V M 2020 IEEE Trans. Circuits Syst. Video Technol. 30 3943Google Scholar

    [47]

    Lv W, Xiong J, Shi J, Huang Y, Qin S 2021 J. Intell. Manuf. 32 441Google Scholar

    [48]

    Zhang H, Wang Z, Liu D 2014 IEEE Transactions on Neural Networks and Learning Systems 25 1229Google Scholar

    [49]

    Baozhou Z, Hofstee P, Lee J, Al-Ars Z 2021 arXiv: 2108.08205 [cs.CV]

    [50]

    Karim N, Rahnavard N 2021 arXiv: 2107.01330[cs.CV]

    [51]

    Hoshi I, Shimobaba T, Kakue T, Ito T 2020 Opt. Express 28 34069Google Scholar

    [52]

    Stollenga M, Masci J, Gomez F, Schmidhuber J 2014 arXiv: 1407.3068[cs.CV]

    [53]

    Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y 2018 arXiv: 1807.02758[cs.CV]

    [54]

    Liao X, He L, Mao J, Xu M 2024 Remote Sensing 16 1688Google Scholar

    [55]

    Yu W K, Wang S F, Shang K Q 2024 Sensors 24 1012Google Scholar

    [56]

    Ronneberger O, Fischer P, Brox T 2015 arXiv: 1505.04597[cs.CV]

    [57]

    Meng Z, Yu Z, Xu K, Yuan X 2021 arXiv: 2108.12654 [eess.IV]

    [58]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603Google Scholar

    [59]

    Lin J, Yan Q, Lu S, Zheng Y, Sun S, Wei Z 2022 Photonics 9 343Google Scholar

  • 图 1  实验方案图

    Figure 1.  Experimental schematic diagram

    图 2  融合注意力机制的U-net卷积神经网络结构示意图 (a) U-net结构的卷积网络; (b) CBAM模块结构总览; (c)空间注意力机制模块; (d)通道注意力机制模块

    Figure 2.  Schematic diagram of U-net convolutional neural network structure with integrated attention mechanism: (a) Convolutional neural networks of a U-net architecture; (b) overall structure of CBAM; (c) spatial attention module; (d) channel attention module

    图 3  融合注意力机制与原始U-net网络重建方案在不同采样率下的结果

    Figure 3.  Results of the fusion attention mechanism and the original U-net reconstruction scheme under different sampling rates

    图 4  不同采样率下SSIM的对比

    Figure 4.  Comparison of SSIM at different sampling rates

    图 5  不同采样率下PSNR的对比

    Figure 5.  Comparison of PSNR at different sampling rates

    图 6  不同迭代次数下PSNR与损失函数的变化对比 (a)两种方案重建图像的PSNR随迭代次数的变化; (b)本文方案的损失函数在不同初始学习率下随迭代次数的变化

    Figure 6.  Comparison of PSNR and loss function under different iterations: (a) The PSNR of the reconstructed images of the two schemes varies with iterations; (b) the loss function of our scheme varies with iterations under different initial learning rates.

    Baidu
  • [1]

    Kilcullen P, Ozaki T, Liang J 2022 Nat. Commun. 13 7879Google Scholar

    [2]

    Hahamovich E, Monin S, Hazan Y, Rosenthal A 2021 Nat. Commun. 12 4516Google Scholar

    [3]

    Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar

    [4]

    Ferri F, Magatti D, Gatti A, Bache M, Brambilla E, Lugiato L 2005 Phys. Rev. Lett. 94 183602Google Scholar

    [5]

    Wang F, Wang C, Deng C, Han S, Situ G 2022 Photon. Res. 10 104Google Scholar

    [6]

    Pan L, Shen Y, Qi J, Shi J, Feng X 2023 Opt. Express 31 13943Google Scholar

    [7]

    Song K, Bian Y, Wang D, Li R, Wu K, Liu H, Qin C, Hu J, Xiao L 2024 Laser & Photonics Rev. published online 2401397

    [8]

    Zhao X S, Yu C, Wang C, Li T, Liu B, Lu H, Zhang R, Dou X, Zhang J, Pan J W 2024 Appl. Phys. Lett. 125 211103Google Scholar

    [9]

    Karpowicz N, Zhong H, Xu J, Lin K I, Hwang J S, Zhang X C 2005 Semicond. Sci. Tech. 20 S293Google Scholar

    [10]

    Simões M, Vaz P, Cortez A F V 2024. arXiv: 2411.03907 [physics.ins-det]

    [11]

    Shwartz S 2021 Sci. Bull. 66 857Google Scholar

    [12]

    Olbinado M P, Paganin D M, Cheng Y, Rack A 2021 Optica 8 1538Google Scholar

    [13]

    Clemente P, Durán V, Tajahuerce E, Andrés P, Climent V, Lancis J 2013 Opt. Lett. 38 2524Google Scholar

    [14]

    Jiang W, Yin Y, Jiao J, Zhao X, Sun B 2022 Photon. Res. 10 2157Google Scholar

    [15]

    Gibson G M, Sun B, Edgar M P, Phillips D B, Hempler N, Maker G T, Malcolm G P A, Padgett M J 2017 Opt. Express 25 2998Google Scholar

    [16]

    Zhou L, Xiao Y, Chen W 2023 Opt. Express 31 23027Google Scholar

    [17]

    Xu Y, Lu L, Saragadam V, Kelly K F 2024 Nat. Commun. 15 1456Google Scholar

    [18]

    Li J, Li X, Yardimci N T, Hu J, Li Y, Chen J, Hung Y C, Jarrahi M, Ozcan A 2023 Nat. Commun. 14 6791Google Scholar

    [19]

    Li S, Liu X, Xiao Y, Ma Y, Yang J, Zhu K, Tian X 2023 Opt. Express 31 4712Google Scholar

    [20]

    Zheng P, Dai Q, Li Z, Ye Z, Xiong J, Liu H C, Zheng G, Zhang S 2021 Sci. Adv. 7 eabg0363Google Scholar

    [21]

    Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110Google Scholar

    [22]

    López-García L, Cruz-Santos W, GarcíaArellano A, Filio-Aguilar P, Cisneros-Martínez J A, Ramos-García R 2022 Opt. Express 30 13714Google Scholar

    [23]

    Zhang Z, Ma X, Zhong J 2015 Nat. Commun. 6 6225Google Scholar

    [24]

    Donoho D 2006 IEEE Trans. Inf. Theory 52 1289Google Scholar

    [25]

    Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE Signal Process Mag. 25 83Google Scholar

    [26]

    Huang L, Luo R, Liu X, Hao X 2022 Light Sci. Appl. 11 61Google Scholar

    [27]

    Figueiredo M A T, Nowak R D, Wright S J 2007 IEEE J. Sel. Top. Signal Process. 11 586

    [28]

    Pioneers A 2024 Nat. Mach. Intell. 6 1271Google Scholar

    [29]

    查文舒, 李道伦, 沈路航, 张雯, 刘旭亮 2022 力学学报 54 543Google Scholar

    Zha W S, Li D L, Shen L H, Zhang W, Liu X L 2022 Chinese Journal of Theoretical and Applied Mechanics 54 543Google Scholar

    [30]

    Zhang H, Wang J, Zhang Y, Du X, Wu H, Zhang T 2024 Astronomical Techniques and Instruments 1 1

    [31]

    van Leeuwen C, Podareanu D, Codreanu V, Cai M X, Berg A, Zwart S P, Stoffer R, Veerman M, van Heerwaarden C, Otten S, Caron S, Geng C, Ambrosetti F, Bonvin A M J J 2020 arXiv: 2004.03454[cs.CE]

    [32]

    Barbastathis G, Ozcan A, Situ G 2019 Optica 6 921Google Scholar

    [33]

    Ruget A, Moodley C, Forbes A, Leach J 2024 Opt. Express 32 41057Google Scholar

    [34]

    Wetzstein G, Ozcan A, Gigan S, Fan S, Englund D, Soljačić M, Denz C, Miller D A B, Psaltis D 2020 Nature 588 39Google Scholar

    [35]

    Lyu M, Wang W, Wang H, Wang H, Li G, Chen N, Situ G 2017 Sci. Rep. 7 17865Google Scholar

    [36]

    Zhang X, Deng C, Wang C, Wang F, Situ G 2023 ACS Photonics 10 2363Google Scholar

    [37]

    Li J, Li Y, Li J, Zhang Q, Li J 2020 Opt. Express 28 22992Google Scholar

    [38]

    Wang F, Wang C, Chen M, Gong W, Zhang Y, Han S, Situ G 2022 Light Sci. Appl. 11 1Google Scholar

    [39]

    Peng L, Xie S, Qin T, Cao L, Bian L 2023 Opt. Lett. 48 2527Google Scholar

    [40]

    Liu H, Bian L, Zhang J 2023 Opt. Laser Technol. 157 108600Google Scholar

    [41]

    Liu X, Han T, Zhou C, Huang J, Ju M, Xu B, Song L 2023 Opt. Express 31 9945Google Scholar

    [42]

    Hammernik K, Küstner T, Yaman B, Huang Z, Rueckert D, Knoll F, Akçakaya M 2023 IEEE Signal Process Mag. 40 98

    [43]

    Wang P, Chen P, Yuan Y, Liu D, Huang Z, Hou X, Cottrell G W 2017. arXiv: 1702.08502[cs.CV]

    [44]

    Ulyanov D, Vedaldi A, Lempitsky V 2020 IJCV 128 1867Google Scholar

    [45]

    Ren W, Nie X, Peng T, Scully M O 2022 Opt. Express 30 47921Google Scholar

    [46]

    Zhang H, Sindagi V, Patel V M 2020 IEEE Trans. Circuits Syst. Video Technol. 30 3943Google Scholar

    [47]

    Lv W, Xiong J, Shi J, Huang Y, Qin S 2021 J. Intell. Manuf. 32 441Google Scholar

    [48]

    Zhang H, Wang Z, Liu D 2014 IEEE Transactions on Neural Networks and Learning Systems 25 1229Google Scholar

    [49]

    Baozhou Z, Hofstee P, Lee J, Al-Ars Z 2021 arXiv: 2108.08205 [cs.CV]

    [50]

    Karim N, Rahnavard N 2021 arXiv: 2107.01330[cs.CV]

    [51]

    Hoshi I, Shimobaba T, Kakue T, Ito T 2020 Opt. Express 28 34069Google Scholar

    [52]

    Stollenga M, Masci J, Gomez F, Schmidhuber J 2014 arXiv: 1407.3068[cs.CV]

    [53]

    Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y 2018 arXiv: 1807.02758[cs.CV]

    [54]

    Liao X, He L, Mao J, Xu M 2024 Remote Sensing 16 1688Google Scholar

    [55]

    Yu W K, Wang S F, Shang K Q 2024 Sensors 24 1012Google Scholar

    [56]

    Ronneberger O, Fischer P, Brox T 2015 arXiv: 1505.04597[cs.CV]

    [57]

    Meng Z, Yu Z, Xu K, Yuan X 2021 arXiv: 2108.12654 [eess.IV]

    [58]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603Google Scholar

    [59]

    Lin J, Yan Q, Lu S, Zheng Y, Sun S, Wei Z 2022 Photonics 9 343Google Scholar

  • [1] SUN Kangsheng, HAN Chao, QIN Haifeng, GU Tao, LI Wei, YU Cheng. Fast generation algorithm of high-quality holograms based on attention convolutional neural network. Acta Physica Sinica, 2025, 74(8): 084203. doi: 10.7498/aps.74.20241713
    [2] JIANG Tingshuai, RUAN Yirun, LI Hai, BAI Liang, YUAN Yifei, YU Tianyuan. Entropy-based weighted multi-channel convolutional neural network method for node importance assessment. Acta Physica Sinica, 2025, 74(12): . doi: 10.7498/aps.74.20250329
    [3] Wu Yin-Hua, Chong Zhe, Zhu Peng-Fei, Chen Sha-Sha, Zhou Shun. Removal of background white light in coherent-dispersion spectrometer based on convolutional neural network. Acta Physica Sinica, 2025, 74(10): . doi: 10.7498/aps.74.20250090
    [4] Chen Ming-Lai, Ma Cai-Wen, Liu Hui, Luo Xiu-Juan, Feng Xu-Bin, Yue Ze-Lin, Zhao Jing. Fast sampling based image reconstruction algorithm for sheared-beam imaging. Acta Physica Sinica, 2024, 73(2): 024202. doi: 10.7498/aps.73.20231254
    [5] He Zhi-Ye, Zhang Yan-Dong, Tang Chun-Hua, Li Jun-Li, Li Si-Wei, Yu Bin. Analysis of influence of imaging resolution of relay lens on image reconstruction quality in pixel-wise coded exposure imaging technology. Acta Physica Sinica, 2023, 72(2): 024201. doi: 10.7498/aps.72.20221588
    [6] Zhang Jian, Chen Jia-Lin, Chen Xiao-Ran, Mao Tian-Yi, Shen Shan-Shan, He Rui-Qing. Dynamic occlusion removal in single-pixel imaging system based on self-check. Acta Physica Sinica, 2023, 72(3): 034201. doi: 10.7498/aps.72.20221918
    [7] Hu Jin-Hu, Lin Dan-Ying, Zhang Wei, Zhang Chen-Shuang, Qu Jun-Le, Yu Bin. Dual-sided illumination light-sheet fluorescence microscopy with virtual single-pixel imaging deconvolution. Acta Physica Sinica, 2022, 71(2): 028701. doi: 10.7498/aps.71.20211358
    [8] Zhan Qing-Liang, Bai Chun-Jin, Ge Yao-Jun. Deep learning representation of flow time history for complex flow field. Acta Physica Sinica, 2022, 71(22): 224701. doi: 10.7498/aps.71.20221314
    [9] Cui An-Jing, Li Dao-Jing, Wu Jiang, Zhou Kai, Gao Jing-Han. Sparse sampling in frequency domain and laser imaging. Acta Physica Sinica, 2022, 71(5): 058705. doi: 10.7498/aps.71.20211408
    [10] Zhao Wei-Rui, Wang Hao, Zhang Lu, Zhao Yue-Jin, Chu Chun-Yan. High-precision co-phase method for segments based on a convolutional neural network. Acta Physica Sinica, 2022, 71(16): 164202. doi: 10.7498/aps.71.20220434
    [11] Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang. Accelerating super-resolution ultrasound localization microscopy using generative adversarial net. Acta Physica Sinica, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [12] Zhou Jing, Zhang Xiao-Fang, Zhao Yan-Geng. Phase retrieval wavefront sensing based on image fusion and convolutional neural network. Acta Physica Sinica, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [13] Huang Wei-Jian, Li Yong-Tao, Huang Yuan. Prediction of chaotic time series using hybrid neural network and attention mechanism. Acta Physica Sinica, 2021, 70(1): 010501. doi: 10.7498/aps.70.20200899
    [14] Wang Chen-Yang, Duan Qian-Qian, Zhou Kai, Yao Jing, Su Min, Fu Yi-Chao, Ji Jun-Yang, Hong Xin, Liu Xue-Qin, Wang Zhi-Yong. A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm. Acta Physica Sinica, 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [15] Li Ming-Fei, Yan Lu, Yang Ran, Liu Yuan-Xing. Fast single-pixel imaging based on optimized reordering Hadamard basis. Acta Physica Sinica, 2019, 68(6): 064202. doi: 10.7498/aps.68.20181886
    [16] Zhou Yang,  Zhang Hong-Wei,  Zhong Fei,  Guo Shu-Xu. Iterative denoising of ghost imaging based on adaptive threshold method. Acta Physica Sinica, 2018, 67(24): 244201. doi: 10.7498/aps.67.20181240
    [17] Yao Wei-Qiang, Huang Wen-Hao, Yang Chu-Ping. Theoretical analysis of spectrum reconstruction imaging using single-pixel detection. Acta Physica Sinica, 2017, 66(3): 034201. doi: 10.7498/aps.66.034201
    [18] Liu Xin, Yi Ming-Hao, Guo Jin-Chuan. Line focal X-ray source imaging. Acta Physica Sinica, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [19] Yu Shu-Hai, Dong Lei, Liu Xin-Yue, Ling Jian-Yong. Analysis on reconstruction of virtual images of Fourier telescopy. Acta Physica Sinica, 2015, 64(18): 184205. doi: 10.7498/aps.64.184205
    [20] Cao Bei, Luo Xiu-Juan, Si Qing-Dan, Zeng Zhi-Hong. Four-phase closure algorithm for coherent field imaging. Acta Physica Sinica, 2015, 64(5): 054204. doi: 10.7498/aps.64.054204
Metrics
  • Abstract views:  749
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  03 January 2025
  • Accepted Date:  06 February 2025
  • Available Online:  21 February 2025
  • Published Online:  20 April 2025

/

返回文章
返回
Baidu
map