-
Sheared-beam imaging (SBI) is an unconventional ground-based optical imaging technique. It breaks through the traditional optical imaging concept by using three coherent laser beams, which are laterally displaced at the transmit plane, to illuminate the target, reconstructing the target image from echo signals. However, the echo data sampling of the imaging system is still not fast enough to reconstruct the high resolution and clear image of the target when imaging the target that is at rapidly changing position and attitude. In order to solve this problem, in this work an image reconstruction method is proposed based on five-beam fast sampling. An emitted beam array arranged in the cross shape with a central symmetrical structure is proposed, and the encoding and decoding method of the imaging system are changed. With a single exposure, the echo signals carry more spectrum information of the target, and the number of reconstructed images can be increased from 1 to 8, which quickly suppresses the speckle effect of the reconstructed image. Firstly, the principle of the imaging technique based on fast sampling is presented. Then, an image reconstruction algorithm based on fast sampling is studied. Eight groups of phase differences and amplitude information of the target can be extracted from echo signals. The wavefront phases are solved by the least-squares method, and wavefront amplitude can be obtained by the algebraic operation of speckle amplitude. The target image is reconstructed by the inverse Fourier transform. The simulation results show that comparing with the traditional three-beam image reconstruction method, the sampling times of echo data needed to obtain the same quality image are reduced from 20 to 5, which greatly reduces the sampling times of echo data and improves the sampling rate of echo data.
-
Keywords:
- sheared-beam imaging /
- fast sampling /
- image reconstruction /
- sampling rate
[1] Gao X, Feng L J, Li X Y 2016 Opt. Commun. 380 452Google Scholar
[2] 董磊, 卢振武, 刘欣悦 2019 中国光学 12 138Google Scholar
Dong L, Lu Z W, Liu X Y 2019 Chin. Opt. 12 138Google Scholar
[3] 曹蓓, 罗秀娟, 陈明徕, 张羽 2015 64 124205Google Scholar
Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205Google Scholar
[4] 罗秀娟, 刘辉, 张羽, 陈明徕, 兰富洋 2019 中国光学 12 753Google Scholar
Luo X J, Liu H, Zhang Y, Chen M L, Lan F Y 2019 Chin. Opt. 12 753Google Scholar
[5] Voelz D G 1995 Proc. SPIE 2566 74Google Scholar
[6] Hutchin R A 1993 Proc. SPIE 2029 161Google Scholar
[7] Voelz D G, Gonglewski J D, Idell P S 1993 Proc. SPIE 2029 169Google Scholar
[8] Landesman B T, Kindilien P, Pierson R E, Matson C L, Mosley D 1997 Opt. Express 1 312Google Scholar
[9] Sica L 1996 Appl. Opt. 35 264Google Scholar
[10] 兰富洋, 罗秀娟, 陈明徕, 张羽, 刘辉 2017 66 204202Google Scholar
Lan F Y, Luo X J, Chen M L, Zhang Y, Liu H 2017 Acta Phys. Sin. 66 204202Google Scholar
[11] 兰富洋, 罗秀娟, 樊学武, 张羽, 陈明徕, 刘辉, 贾辉 2018 67 204201Google Scholar
Lan F Y, Luo X J, Fan X W, Zhang Y, Chen M L, Liu H, Jia H 2018 Acta Phys. Sin. 67 204201Google Scholar
[12] Stahl S M, Kremer R, Fairchild P, Hughes K, Spivey B 1996 Proc. SPIE 2847 150Google Scholar
[13] Olson D F, Long S M, Ulibarri L J 2000 Proc. SPIE 4091 323Google Scholar
[14] 陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利 2017 66 024203Google Scholar
Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203Google Scholar
[15] 陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓 2017 66 114201Google Scholar
Lu C M, Chen M L, Luo X J, Zhang Y, Liu L, Lan F Y, Cao B 2017 Acta Phys. Sin. 66 114201Google Scholar
[16] 陈明徕, 刘辉, 张羽, 罗秀娟, 马彩文, 岳泽霖, 赵晶 2022 71 194201Google Scholar
Chen M L, Liu H, Zhang Y, Luo X J, Ma C W, Yue Z L, Zhao J 2022 Acta Phys. Sin. 71 194201Google Scholar
[17] Chen M L, Ma C W, Luo X J, Liu H, Zhang Y, Yue Z L, Zhao J 2023 Proc. SPIE 12601 126010M-1Google Scholar
[18] Chen M L, Ma C W, Zhang Y, Liu H, Luo X J, Yue Z L, Zhao J, Sun C 2023 Opt. Eng. 62 073102Google Scholar
[19] Landesman B T, Olson D F 1994 Proc. SPIE 2302 14Google Scholar
[20] Bush K A, Barnard C C, Voelz D G 1996 Proc. SPIE 2828 362Google Scholar
[21] Rider D B, Voelz D G, Bush K A, Magee E 1993 Proc. SPIE 2029 150Google Scholar
[22] Fienup J R 2003 US Patent 006597304B2 [2003-7-22
[23] Gamiz V L 1994 Proc. SPIE 2302 2Google Scholar
[24] Speckle-Based Imaging, Optical Physics Company http://www.opci.com/ technologies/speckle-based-imaging [2017-1-9
[25] Goodman J W 1985 Statistical Optics (New York: John Wiley) p495
[26] Goodman J W 1996 Introduction to Fourier Optics (2nd Ed.) (New York: Mc Graw Hill
[27] Xiang M, Pan A, Zhao Y Y, Fan X W, Zhao H, Li C, Yao B L 2021 Opt. Lett. 46 29Google Scholar
[28] Idell P S, Gonglewski J D 1990 Opt. Lett. 15 1309Google Scholar
-
表 1 成像系统的仿真参数
Table 1. Simulation parameters for imaging system.
仿真参数 取值 激光波长/nm 532 目标尺寸 3 m × 3 m 采样频率/Hz 1200 采样点数量 9600 第1光束频移量/MHz 80 第2光束频移量 80 MHz+20 Hz 第3光束频移量 80 MHz+80 Hz 第4光束频移量 80 MHz+180 Hz 第5光束频移量 80 MHz+220 Hz 剪切量${s_x} $/m 0.09 剪切量${s_y} $/m 0.09 探测器阵列规模 100 × 100 表 2 两种算法所需的数据采样次数
Table 2. The number of data sampling times required for both algorithms.
Strehl比 0.7360 0.7612 0.7823 0.8001 0.8133 0.8230 快速图像重构算法的采样次数 1 2 3 4 5 6 传统三光束图像重构算法的采样次数 4 5 7 11 20 无法
达到 -
[1] Gao X, Feng L J, Li X Y 2016 Opt. Commun. 380 452Google Scholar
[2] 董磊, 卢振武, 刘欣悦 2019 中国光学 12 138Google Scholar
Dong L, Lu Z W, Liu X Y 2019 Chin. Opt. 12 138Google Scholar
[3] 曹蓓, 罗秀娟, 陈明徕, 张羽 2015 64 124205Google Scholar
Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205Google Scholar
[4] 罗秀娟, 刘辉, 张羽, 陈明徕, 兰富洋 2019 中国光学 12 753Google Scholar
Luo X J, Liu H, Zhang Y, Chen M L, Lan F Y 2019 Chin. Opt. 12 753Google Scholar
[5] Voelz D G 1995 Proc. SPIE 2566 74Google Scholar
[6] Hutchin R A 1993 Proc. SPIE 2029 161Google Scholar
[7] Voelz D G, Gonglewski J D, Idell P S 1993 Proc. SPIE 2029 169Google Scholar
[8] Landesman B T, Kindilien P, Pierson R E, Matson C L, Mosley D 1997 Opt. Express 1 312Google Scholar
[9] Sica L 1996 Appl. Opt. 35 264Google Scholar
[10] 兰富洋, 罗秀娟, 陈明徕, 张羽, 刘辉 2017 66 204202Google Scholar
Lan F Y, Luo X J, Chen M L, Zhang Y, Liu H 2017 Acta Phys. Sin. 66 204202Google Scholar
[11] 兰富洋, 罗秀娟, 樊学武, 张羽, 陈明徕, 刘辉, 贾辉 2018 67 204201Google Scholar
Lan F Y, Luo X J, Fan X W, Zhang Y, Chen M L, Liu H, Jia H 2018 Acta Phys. Sin. 67 204201Google Scholar
[12] Stahl S M, Kremer R, Fairchild P, Hughes K, Spivey B 1996 Proc. SPIE 2847 150Google Scholar
[13] Olson D F, Long S M, Ulibarri L J 2000 Proc. SPIE 4091 323Google Scholar
[14] 陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利 2017 66 024203Google Scholar
Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203Google Scholar
[15] 陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓 2017 66 114201Google Scholar
Lu C M, Chen M L, Luo X J, Zhang Y, Liu L, Lan F Y, Cao B 2017 Acta Phys. Sin. 66 114201Google Scholar
[16] 陈明徕, 刘辉, 张羽, 罗秀娟, 马彩文, 岳泽霖, 赵晶 2022 71 194201Google Scholar
Chen M L, Liu H, Zhang Y, Luo X J, Ma C W, Yue Z L, Zhao J 2022 Acta Phys. Sin. 71 194201Google Scholar
[17] Chen M L, Ma C W, Luo X J, Liu H, Zhang Y, Yue Z L, Zhao J 2023 Proc. SPIE 12601 126010M-1Google Scholar
[18] Chen M L, Ma C W, Zhang Y, Liu H, Luo X J, Yue Z L, Zhao J, Sun C 2023 Opt. Eng. 62 073102Google Scholar
[19] Landesman B T, Olson D F 1994 Proc. SPIE 2302 14Google Scholar
[20] Bush K A, Barnard C C, Voelz D G 1996 Proc. SPIE 2828 362Google Scholar
[21] Rider D B, Voelz D G, Bush K A, Magee E 1993 Proc. SPIE 2029 150Google Scholar
[22] Fienup J R 2003 US Patent 006597304B2 [2003-7-22
[23] Gamiz V L 1994 Proc. SPIE 2302 2Google Scholar
[24] Speckle-Based Imaging, Optical Physics Company http://www.opci.com/ technologies/speckle-based-imaging [2017-1-9
[25] Goodman J W 1985 Statistical Optics (New York: John Wiley) p495
[26] Goodman J W 1996 Introduction to Fourier Optics (2nd Ed.) (New York: Mc Graw Hill
[27] Xiang M, Pan A, Zhao Y Y, Fan X W, Zhao H, Li C, Yao B L 2021 Opt. Lett. 46 29Google Scholar
[28] Idell P S, Gonglewski J D 1990 Opt. Lett. 15 1309Google Scholar
Catalog
Metrics
- Abstract views: 1793
- PDF Downloads: 48
- Cited By: 0