Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic occlusion removal in single-pixel imaging system based on self-check

Zhang Jian Chen Jia-Lin Chen Xiao-Ran Mao Tian-Yi Shen Shan-Shan He Rui-Qing

Citation:

Dynamic occlusion removal in single-pixel imaging system based on self-check

Zhang Jian, Chen Jia-Lin, Chen Xiao-Ran, Mao Tian-Yi, Shen Shan-Shan, He Rui-Qing
PDF
HTML
Get Citation
  • Single-pixel imaging (SPI) system modulates the object with a series of patterns, records the corresponding measurements of a bucket detector and forms an image by the algorithm of compressed sensing. In this process, if other objects enter into the field of view of SPI, the accuracy of measurement will be seriously affected, and the quality of the reconstructed image will decrease. Owing to the randomness of the reflectivity and shape of the occlusion, it is difficult to effectively separate the disturbed part from the bucket detector signal. To solve this problem, we propose a self-check method based on the characteristics of Hadamard matrix, that is, using the measurement values of bucket detector to verify the correctness of signal. Usually when using the Hadamard matrix as the measurement matrix in SPI, it is divided into complementary positive pattern and negative pattern. The measurements of these two patterns are subtracted to form the image (the difference value marked by $ l $). Owing to the complementarity of the two patterns, the sum of the corresponding measurements should be a constant (marked by $ u $). When dynamic occlusion appears, the value of $ u $ will fluctuate significantly, so we choose $ u $ as the standard to judge whether an occlusion appears. In order to reduce the influence of other factors (such as system noise or fluctuation of the illumination) in the imaging process, we further propose a dynamic occlusion removal method based on the statistical histogram of the values of $ u $. We first find the position of the maximum value in the histogram, and then expand from this position to both sides of the histogram. We calculate the area of the expanded region, and stop the expansion when this area is greater than the threshold. Then the $ l $ corresponding to $ u $ in the expanded region is the measured value without interference. Experiments show that this method can retain the undisturbed signals of the bucket detector and significantly improve the quality of the reconstructed image. This method is simple and effective, and it is also suitable for general imaging scenes. More importantly, it does not need to introduce additional patterns for verification, which effectively promotes the practical process of single pixel imaging technology.
      Corresponding author: He Rui-Qing, njheruiqing@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61905108, 62005128, 62205144), the Natural Science Research Project of the Jiangsu Higher Education Institutions, China (Grant No. 19KJB140010), and the Scientific Research Foundation of Nanjing Institute of Technology, China (Grant No. YKJ201868).
    [1]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar

    [2]

    Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601Google Scholar

    [3]

    Guo Q, Wang Y X, Chen H W, Chen M H, Yang S Y, Xie S Z 2017 Front. Inf. Tech. EL 18 1261Google Scholar

    [4]

    Yang Z H, Chen X, Zhao Z H, Song, M Y, Liu Y, Zhao Z D, Lei H D, Yu, Y J, Wu, L A 2022 Opt. Express 30 864Google Scholar

    [5]

    Sefi O, Klein Y, Strizhevsky E, Dolbnya, I. P, Shwartz S 2020 Opt. Express 28 24568Google Scholar

    [6]

    Liu S, Yao X R, Liu X F, Xu D Z, Wang X D, Liu B, Wang C, Zhai G J, Zhao Q 2019 Opt. Express 27 22138Google Scholar

    [7]

    Meyers R E, Deacon K S, Shih Y H 2011 Appl. Phys. Lett. 98 111115Google Scholar

    [8]

    Yang X, Liu Y, Mou X Y, Hu T Y, Yuan F, Cheng E 2021 Opt. Express 29 12010Google Scholar

    [9]

    Zhang C G, He W Q, Han B N, Liao M H, Lu D J, Peng X, Xu C 2019 Opt. Express 27 13469Google Scholar

    [10]

    Jiao S M, Feng J, Gao Y, Lei T, Yuan X C 2020 Opt. Express 28 7301Google Scholar

    [11]

    Tian N, Guo Q C, Wang A L, Xu D L, Fu L 2011 Opt. Lett. 36 3302Google Scholar

    [12]

    Ma Y Y, Yin Y K, Jiang S, Li X Y, Huang F, Sun B Q 2021 Opt. Lasers. Eng 140 106532Google Scholar

    [13]

    Li X Y, Yin Y K, He W Q, Liu X L, Tang Q J, Peng X 2021 Opt. Express 29 36675Google Scholar

    [14]

    Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE. Signal. Process. Mag 25 83Google Scholar

    [15]

    Vaz P G, Amaral D, Ferreira L F R, Morgado M, Cardoso J 2020 Opt. Express 28 11666Google Scholar

    [16]

    Zhang Z B, Wang X Y, Zheng G A, Zhong J G 2017 Opt. Express 25 19619Google Scholar

    [17]

    Sun M J, Meng L T, Edgar M P, Padgett M J, Radwell N 2017 Sci. Rep. 7 3464Google Scholar

    [18]

    Yu W K 2019 Sensors 19 4122Google Scholar

    [19]

    Yu W K, Liu Y M 2019 Sensors 19 5135Google Scholar

    [20]

    Jauregui-Sanchez Y, Clemente P, Latorre-Carmona P, Tajahuerce E, Lancis J 2018 Appl. Opt. 57 B67Google Scholar

    [21]

    Sun M. J, Xu Z H, Wu L A 2018 Opt. Lasers. Eng. 100 18Google Scholar

    [22]

    Jiang S, Li X Y, Zhang Z X, Jiang W J, Wang Y P, He G B, Wang Y R, Sun B Q 2019 Opt. Express 27 22499Google Scholar

    [23]

    Li C, Yin W, Jiang H, Zhang Y 2013 Comput Optim Appl. 56 507Google Scholar

  • 图 1  受干扰信号去除流程图 (a) ${\mathit{H}}_{\mathit{i}}^{+}$对应测量信号${y}_{i}^{+}$; (b) ${ {H}}_{i}^{-}$对应测量信号${y}_{i}^{-};$ (c) ${ {H}}_{i}$对应的自校验信号$ {u}_{i}; $ (d) ${ {H}}_{i}$对应的用于重构的信号$ {l}_{i} $; (e) $ {u}_{i} $的统计直方图, 红色区域表示已经生长的区域, 黄色箭头表示生长方向, 蓝色区域表示未生长区域; (f) 使用本文算法后的$ {u}_{i} $统计直方图, 红色、蓝色区域分别表示正确和受干扰的桶探测器数值范围; (g), (h)分别是使用本文算法筛选后的$ {u}_{i} $$ {l}_{i} $, 红色和蓝色分别表示正确和错误测量值, 黄色色块表示真实干扰存在的帧数

    Figure 1.  Flowchart of abnormal signal removal: (a) ${y}_{i}^{+}$, measurement value of the pattern ${ {H}}_{i}^{+}$; (b) ${y}_{i}^{-}$, measurement value of the pattern ${ {H}}_{i}^{-}$; (c) $ {u}_{i} $, the signal for self-check, corresponding to $ {\mathit{H}}_{i} $; (d) $ {l}_{i} $, the signal for reconstruction, corresponding to $ {\mathit{H}}_{i} $; (e) statistical histogram of $ {u}_{i} $; red areas indicate the area that have grown, yellow arrows indicate growth direction, blue areas indicate ungrown areas; (f) statistical histogram of $ {u}_{i} $ obtained by the proposed algorithm in this paper, the red and blue areas represent the ranges of correct and disturbed bucket detector value respectively; (g), (h) $ {u}_{i} $ and $ {l}_{i} $ obtained by the proposed algorithm in this paper, respectively, red and blue dots indicate correct and incorrect measurements, respectively, the yellow color block indicates the number of frames where the real occlusion exists.

    图 2  成像系统示意图 (a)成像系统; (b)场景1无干扰情况下的重构图像; (c)场景2无干扰情况下的重构图像; (d1), (d2) 场景1, 2无干扰时$ {u}_{i} $曲线; (d3), (d4) 场景1, 2无干扰时$ {l}_{i} $曲线; (e)干扰物为黑布时, 目标成像过程中的遮挡情况; (f1)—(f3)干扰物(A4纸、黑绒布、彩色水果图案)

    Figure 2.  Schematic diagram of imaging system: (a) Imaging system; (b) reconstructed image of scene 1 without occlusion; (c) reconstructed image of scene 2 without occlusion; (d1), (d2) $ {u}_{i} $, curves of scene 1 and 2 respectively; (d3), (d4) $ {l}_{i} $, curves of scene 1 and 2 respectively; (e) occlusion (black cloth) during single-pixel imaging; (f1)–(f3) occlusion (A4 paper, black cloth and color fruit pattern).

    图 3  场景1重构情况 (a1)—(f1)未去除干扰的重构图像; (a2)—(f2)去除干扰后的重构图像; (a3)—(f3) $ {u}_{i} $的统计直方图; (a4)—(f4) $ {u}_{i} $强度值; (a5)—(f5) $ {l}_{i} $强度值; 图中红色表示使用本方法得到的正确桶探测器检验值$ {u}_{i} $(直方图中为$ {u}_{i} $的强度范围)和用于重构的强度值$ {l}_{i} $, 蓝色表示由本方法得到的干扰值

    Figure 3.  Reconstruction in scene 1: (a1)–(f1) Reconstructed image without removing occlusion; (a2)–(f2) reconstructed image after removing occlusion; (a3)–(f3) statistical histogram of $ {u}_{i} $; (a4)–(f4) $ {u}_{i} $ value; (a5)–(f5) $ {l}_{i} $ value; in the figure, red represents the correct value of $ {u}_{i} $ (or the intensity range of $ {u}_{i} $ in the histogram) and the value of $ {l}_{i} $ used for reconstruction, while blue one represents the wrong values.

    图 4  场景2重构情况 (a1)—(f1)未去除干扰的重构图像; (a2)—(f2)去除干扰后的重构图像; (a3)—(f3) $ {u}_{i} $的统计直方图; (a4)—(f4) $ {u}_{i} $强度值; (a5)—(f5) $ {l}_{i} $强度值; 图中红色表示使用本方法得到的正确桶探测器检验值$ {u}_{i} $(直方图中为$ {u}_{i} $的强度范围)和用于重构的强度值$ {l}_{i} $, 蓝色表示由本方法得到的干扰值

    Figure 4.  Reconstruction in scene 2: (a1)–(f1) Reconstructed image without removing occlusion; (a2)–(f2) reconstructed image after removing occlusion; (a3)–(f3) statistical histogram of $ {u}_{i} $; (a4)–(f4) $ {u}_{i} $ value; (a5)–(f5) $ {l}_{i} $ value; the red curves represents the correct value of $ {u}_{i} $ (or the intensity range of $ {u}_{i} $ in the histogram) and the value of $ {l}_{i} $ used for reconstruction, while blue one represents the wrong values.

    图 5  多种干扰条件下的单像素系统抗干扰能力测试 (a1), (b1)未去除干扰的重构图像; (a2), (b2)去除干扰后的重构图像; (a3), (b3)$ {u}_{i} $的统计直方图; (a4), (b4)$ {u}_{i} $强度值; (a5), (b.5)$ {l}_{i} $强度值; 图中红色表示使用本方法得到的正确桶探测器检验值$ {u}_{i} $(直方图中为$ {u}_{i} $的强度范围)和用于重构的强度值$ {l}_{i} $, 蓝色表示由本方法得到的干扰值

    Figure 5.  Test of dynamic occlusion removal under various occlusion conditions: (a1), (b1) Reconstructed image without removing occlusion; (a2), (b2) reconstructed image after removing occlusion; (a3), (b3) statistical histogram of $ {u}_{i} $; (a4), (b4) the value of $ {u}_{i} $; (a5), (b5) the value of $ {l}_{i} $; the red curves represents the correct value of $ {u}_{i} $ (or the intensity range of $ {u}_{i} $ in the histogram) and the value of $ {l}_{i} $ used for reconstruction, while blue one represents the wrong values.

    Baidu
  • [1]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar

    [2]

    Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601Google Scholar

    [3]

    Guo Q, Wang Y X, Chen H W, Chen M H, Yang S Y, Xie S Z 2017 Front. Inf. Tech. EL 18 1261Google Scholar

    [4]

    Yang Z H, Chen X, Zhao Z H, Song, M Y, Liu Y, Zhao Z D, Lei H D, Yu, Y J, Wu, L A 2022 Opt. Express 30 864Google Scholar

    [5]

    Sefi O, Klein Y, Strizhevsky E, Dolbnya, I. P, Shwartz S 2020 Opt. Express 28 24568Google Scholar

    [6]

    Liu S, Yao X R, Liu X F, Xu D Z, Wang X D, Liu B, Wang C, Zhai G J, Zhao Q 2019 Opt. Express 27 22138Google Scholar

    [7]

    Meyers R E, Deacon K S, Shih Y H 2011 Appl. Phys. Lett. 98 111115Google Scholar

    [8]

    Yang X, Liu Y, Mou X Y, Hu T Y, Yuan F, Cheng E 2021 Opt. Express 29 12010Google Scholar

    [9]

    Zhang C G, He W Q, Han B N, Liao M H, Lu D J, Peng X, Xu C 2019 Opt. Express 27 13469Google Scholar

    [10]

    Jiao S M, Feng J, Gao Y, Lei T, Yuan X C 2020 Opt. Express 28 7301Google Scholar

    [11]

    Tian N, Guo Q C, Wang A L, Xu D L, Fu L 2011 Opt. Lett. 36 3302Google Scholar

    [12]

    Ma Y Y, Yin Y K, Jiang S, Li X Y, Huang F, Sun B Q 2021 Opt. Lasers. Eng 140 106532Google Scholar

    [13]

    Li X Y, Yin Y K, He W Q, Liu X L, Tang Q J, Peng X 2021 Opt. Express 29 36675Google Scholar

    [14]

    Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE. Signal. Process. Mag 25 83Google Scholar

    [15]

    Vaz P G, Amaral D, Ferreira L F R, Morgado M, Cardoso J 2020 Opt. Express 28 11666Google Scholar

    [16]

    Zhang Z B, Wang X Y, Zheng G A, Zhong J G 2017 Opt. Express 25 19619Google Scholar

    [17]

    Sun M J, Meng L T, Edgar M P, Padgett M J, Radwell N 2017 Sci. Rep. 7 3464Google Scholar

    [18]

    Yu W K 2019 Sensors 19 4122Google Scholar

    [19]

    Yu W K, Liu Y M 2019 Sensors 19 5135Google Scholar

    [20]

    Jauregui-Sanchez Y, Clemente P, Latorre-Carmona P, Tajahuerce E, Lancis J 2018 Appl. Opt. 57 B67Google Scholar

    [21]

    Sun M. J, Xu Z H, Wu L A 2018 Opt. Lasers. Eng. 100 18Google Scholar

    [22]

    Jiang S, Li X Y, Zhang Z X, Jiang W J, Wang Y P, He G B, Wang Y R, Sun B Q 2019 Opt. Express 27 22499Google Scholar

    [23]

    Li C, Yin W, Jiang H, Zhang Y 2013 Comput Optim Appl. 56 507Google Scholar

  • [1] He Zhi-Ye, Zhang Yan-Dong, Tang Chun-Hua, Li Jun-Li, Li Si-Wei, Yu Bin. Analysis of influence of imaging resolution of relay lens on image reconstruction quality in pixel-wise coded exposure imaging technology. Acta Physica Sinica, 2023, 72(2): 024201. doi: 10.7498/aps.72.20221588
    [2] Liao Yong-Quan, Zhang Xiao-Xue, Liu Hui, Zhu Xiang-Yu, Chen Xu-Dong, Lin Zhi-Li. Self-reference interferometric measurement of scattering medium transmission matrix based on digital micromirror device superpixel method. Acta Physica Sinica, 2023, 72(22): 224201. doi: 10.7498/aps.72.20230660
    [3] Ma Lu-Yao, Zhang Xing-Yu, Shu Zhi-Yun, Xiao You, Zhang Tian-Zhu, Li Hao, You Li-Xing. Superconducting nanowire single photon detector under AC-bias with self-differential readout. Acta Physica Sinica, 2022, 71(15): 158501. doi: 10.7498/aps.71.20220373
    [4] Hu Jin-Hu, Lin Dan-Ying, Zhang Wei, Zhang Chen-Shuang, Qu Jun-Le, Yu Bin. Dual-sided illumination light-sheet fluorescence microscopy with virtual single-pixel imaging deconvolution. Acta Physica Sinica, 2022, 71(2): 028701. doi: 10.7498/aps.71.20211358
    [5] Huang Dian, Dai Wan-Lin, Wang Yi-Wen, He Qing, Wei Lian-Fu. Noise processing of superconducting kinetic inductance single photon detector. Acta Physica Sinica, 2021, 70(14): 140703. doi: 10.7498/aps.70.20210185
    [6] Tang Peng-Bo, Wang Guan-Qing, Wang Lu, Shi Zhong-Yu, Li Yuan, Xu Jiang-Rong. Experimental investigation on dynamic behavior of single droplet impcating normally on dry sphere. Acta Physica Sinica, 2020, 69(2): 024702. doi: 10.7498/aps.69.20191141
    [7] Li Ming-Fei, Yan Lu, Yang Ran, Kou Jun, Liu Yuan-Xing. Turbulence-free intensity fluctuation self-correlation imaging with sunlight. Acta Physica Sinica, 2019, 68(9): 094204. doi: 10.7498/aps.68.20182181
    [8] Li Ming-Fei, Yan Lu, Yang Ran, Liu Yuan-Xing. Fast single-pixel imaging based on optimized reordering Hadamard basis. Acta Physica Sinica, 2019, 68(6): 064202. doi: 10.7498/aps.68.20181886
    [9] Yao Wei-Qiang, Huang Wen-Hao, Yang Chu-Ping. Theoretical analysis of spectrum reconstruction imaging using single-pixel detection. Acta Physica Sinica, 2017, 66(3): 034201. doi: 10.7498/aps.66.034201
    [10] Li Zhao-Guo, Meng Ling-Biao, Zhou Min-Jie, Diao Kai-Di, Yi Yong, Zhu Xiao-Li, Wu Wei-Dong, Zhang Ji-Cheng. Fabrication of self-standing binary Gabor zone plate and its single order diffraction. Acta Physica Sinica, 2016, 65(12): 124207. doi: 10.7498/aps.65.124207
    [11] Zhuang Jia-Yan, Chen Qian, He Wei-Ji, Mao Tian-Yi. Imaging through dynamic scattering media with compressed sensing. Acta Physica Sinica, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [12] Li Ming-Fei, Mo Xiao-Fan, Zhao Lian-Jie, Huo Juan, Yang Ran, Li Kai, Zhang An-Ning. Single-pixel remote imaging based on Walsh-Hadamard transform. Acta Physica Sinica, 2016, 65(6): 064201. doi: 10.7498/aps.65.064201
    [13] Feng Zhong-Kui, Hu Ge-Li, Xu Ying, Zhu Guang, Zhou Feng, Dai Yin-Ming, Wang Qiu-Liang. Optimization in design of actively shielded whole-body open high-field superconducting MRI magnet. Acta Physica Sinica, 2013, 62(23): 230701. doi: 10.7498/aps.62.230701
    [14] Ni Zhi-Peng, Wang Qiu-Liang, Yan Lu-Guang. A hybrid optimization approach to design of compact self-shielded super conducting magnetic resonance imaging magnet system. Acta Physica Sinica, 2013, 62(2): 020701. doi: 10.7498/aps.62.020701
    [15] Quan Jun, T. C. Au Yeung, Shao Le-Xi. Investigation on the dynamic conductance of mesoscopic system based on the self-consistent transport theory. Acta Physica Sinica, 2011, 60(8): 087201. doi: 10.7498/aps.60.087201
    [16] Zhang Xing-Hua, Zhao Bao-Sheng, Miao Zhen-Hua, Zhu Xiang-Ping, Liu Yong-An, Zou Wei. Study of ultraviolet single photon imaging system. Acta Physica Sinica, 2008, 57(7): 4238-4243. doi: 10.7498/aps.57.4238
    [17] Liu Si-Min, Wang Da-Yun, Zhao Hong-E, Li Zhu-Bin, Guo Ru, Lu Yi, Huang Chun-Fu, Gao Yuan-Mei. The dynamic conversion from self-defocusing to self-focusing and the phase conjugate bright spatial soliton*. Acta Physica Sinica, 2002, 51(12): 2761-2766. doi: 10.7498/aps.51.2761
    [18] WANG FU-PING, GUO JING-BO, WANG ZAN-JI, XIAO DA-CHUAN, LI MAO-TANG. HARMONIC SIGNAL EXTRACTION FROM STRONG CHAOTIC INTERFERENCE. Acta Physica Sinica, 2001, 50(6): 1019-1023. doi: 10.7498/aps.50.1019
    [19] JIANG YING, LIU SIMIN, WEN HAI-DONG, ZHANG XIN-ZHENG, GUO RU, CHEN XIAO-HU, XU JING-JUN, ZHANG GUANG-YIN. DYNAMIC CONVERSION FROM SELF-DEFOCUSING TO EQUIVALENT “SELF-FOCUSING” IN PHOTOVOLTAIC LiNbO3:Fe CRYSTALS. Acta Physica Sinica, 2001, 50(3): 483-488. doi: 10.7498/aps.50.483
    [20] WANG XIAO-GANG. FULLY SELF-CONSISTENT CALCULATION OF POSITRON STATES OF MONOVACANCY IN ALUMINUM. Acta Physica Sinica, 1993, 42(11): 1836-1844. doi: 10.7498/aps.42.1836
Metrics
  • Abstract views:  3348
  • PDF Downloads:  51
  • Cited By: 0
Publishing process
  • Received Date:  05 October 2022
  • Accepted Date:  07 November 2022
  • Available Online:  19 November 2022
  • Published Online:  05 February 2023

/

返回文章
返回
Baidu
map