-
The large single crystal diamonds are successfully synthesized in a NiMnCo-C system with the zinc additive in a series of the experiments at temperatures of 1270-1400 ℃ and pressures of 6.2-6.4 GPa by the temperature gradient growth. Morphology and structural properties of the synthesized diamond are characterized by optical microscope and scanning electron microscopy. The Raman spectrum is used to investigate the crystallization of synthesized diamond. The results show that the colors of synthetic diamond crystals change from yellow to light yellow and nearly disappears with the increase of the zinc additive. There are a large number of irregular pits in the surface of diamond crystal when the zinc additive is increased up to 3.0 wt.%. the Fourier transform infrared spectroscopy spectra reveal that the nitrogen impurity in the synthetic diamond crystal is predominantly in the form of C center (single substitutional nitrogen atoms), and the nitrogen concentration decreases with the increase of zinc additive. Two possibilities that the zinc powders can be used as the nitrogen getter are given. the Raman spectrum shows that the diamond crystallization can be improved when the zinc additive is less than 3.0 wt.%. We believe that our work is greatly helpful for deeply understanding the natural diamond genesis, enriching the types of diamonds, and expanding the application areas of synthetic diamond.
-
Keywords:
- diamond /
- catalyst /
- nitrogen concentration /
- zinc powders
[1] Kim Y D, Choi W, Wakimoto H, Usami S, Tomokage H, Ando T 1999 Appl. Phys. Lett. 75 3219
[2] Isoya J, Kanda H, Akaishi M, Morita Y, Ohshima T 1997 Diamond Relat. Mater. 6 356
[3] Li Y, Jia P X, Ma H A, Zhang J, Wang F B, Chen N, Feng Y G 2014 Cryst. Eng. Commun. 16 7547
[4] Hu M H, Ma H A, Yan B M, Zhang Z F, Li Y, Zhou Z X, Qin J M, Jia X P 2012 Acta Phys. Sin. 61 078102 (in Chinese) [胡美华, 马红安, 颜丙敏, 张壮飞, 李勇, 周振翔, 秦杰明, 贾晓鹏 2012 61 078102]
[5] Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103
[6] Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101
[7] Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51
[8] Singhal S K, Kanda H 1995 J. Cryst. Growth 154 297
[9] Wakatsuki M 1966 Jpn. J. Appl. Phys. 5 337
[10] Hosomi S 1984 Mater. Res. Bull. 19 479
[11] Hosomi S, Nakamura Y, Tanaka S 1988 Science and Technology of New Diamond Tokyo, Japan, October 24-26, 1988 pp239-243
[12] Kanda H, Singhal S K 1995 J. Cryst. Growth 154 297
[13] Palyanov Y N, Kupriyanov I N, Borzdov Y M, Sokol A G, Khokhryakov A F 2009 Cryst. Growth Des. 9 2922
[14] Akella J, Ganguly J, Grover R, Kennedy G 1973 J. Phys. Chem. Solids 34 631
[15] Kanda H, Akaishi M, Yamaoka S 1994 Appl. Phys. Lett. 65 784
[16] Liu X B, Ma H A, Zhang Z F, Zhao M, Guo W, Hu M H, Huang G F, Li Y, Jia X P 2011 Diamond Relat. Mater. 3 468
[17] Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Bex P 2002 J. Phys.: Condens. Matter 14 11269
[18] Kanda H, Akaishi M, Setaka N, Yamaoka S, Fukunaga O 1980 J. Mater. Sci. 15 2743
[19] Liang Z Z, Jia X, Ma H A, Zang C Y, Zhu P W, Guan Q F, Kanda H 2005 Diamond Relat. Mater. 14 1932
[20] Liang Z Z, Liang J Q, Zheng N, Jia X P, Li G J 2009 Acta Phys. Sin. 58 8039 (in Chinese) [梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊 2009 58 8039]
[21] Kanda H, Akaishi M, Yamaoka S 1999 Diamond Relat. Mater. 8 1441
[22] Kanda H 2000 Braz. J. Phys. 30 482
[23] Kanda H, Sato Y, Setaka N, Ohsawa T, Fukunaga O 1981 Nippon Kagaku Kaishi 9 1349
[24] Sumiya H, Satoh S 1996 Diamond Relat. Mater. 5 1359
[25] Sun S S, Jia X P, Zhang Z F, Li Y, Yan B M, Liu X B, Ma H A 2013 J. Cryst. Growth 377 22
-
[1] Kim Y D, Choi W, Wakimoto H, Usami S, Tomokage H, Ando T 1999 Appl. Phys. Lett. 75 3219
[2] Isoya J, Kanda H, Akaishi M, Morita Y, Ohshima T 1997 Diamond Relat. Mater. 6 356
[3] Li Y, Jia P X, Ma H A, Zhang J, Wang F B, Chen N, Feng Y G 2014 Cryst. Eng. Commun. 16 7547
[4] Hu M H, Ma H A, Yan B M, Zhang Z F, Li Y, Zhou Z X, Qin J M, Jia X P 2012 Acta Phys. Sin. 61 078102 (in Chinese) [胡美华, 马红安, 颜丙敏, 张壮飞, 李勇, 周振翔, 秦杰明, 贾晓鹏 2012 61 078102]
[5] Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103
[6] Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101
[7] Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51
[8] Singhal S K, Kanda H 1995 J. Cryst. Growth 154 297
[9] Wakatsuki M 1966 Jpn. J. Appl. Phys. 5 337
[10] Hosomi S 1984 Mater. Res. Bull. 19 479
[11] Hosomi S, Nakamura Y, Tanaka S 1988 Science and Technology of New Diamond Tokyo, Japan, October 24-26, 1988 pp239-243
[12] Kanda H, Singhal S K 1995 J. Cryst. Growth 154 297
[13] Palyanov Y N, Kupriyanov I N, Borzdov Y M, Sokol A G, Khokhryakov A F 2009 Cryst. Growth Des. 9 2922
[14] Akella J, Ganguly J, Grover R, Kennedy G 1973 J. Phys. Chem. Solids 34 631
[15] Kanda H, Akaishi M, Yamaoka S 1994 Appl. Phys. Lett. 65 784
[16] Liu X B, Ma H A, Zhang Z F, Zhao M, Guo W, Hu M H, Huang G F, Li Y, Jia X P 2011 Diamond Relat. Mater. 3 468
[17] Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Bex P 2002 J. Phys.: Condens. Matter 14 11269
[18] Kanda H, Akaishi M, Setaka N, Yamaoka S, Fukunaga O 1980 J. Mater. Sci. 15 2743
[19] Liang Z Z, Jia X, Ma H A, Zang C Y, Zhu P W, Guan Q F, Kanda H 2005 Diamond Relat. Mater. 14 1932
[20] Liang Z Z, Liang J Q, Zheng N, Jia X P, Li G J 2009 Acta Phys. Sin. 58 8039 (in Chinese) [梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊 2009 58 8039]
[21] Kanda H, Akaishi M, Yamaoka S 1999 Diamond Relat. Mater. 8 1441
[22] Kanda H 2000 Braz. J. Phys. 30 482
[23] Kanda H, Sato Y, Setaka N, Ohsawa T, Fukunaga O 1981 Nippon Kagaku Kaishi 9 1349
[24] Sumiya H, Satoh S 1996 Diamond Relat. Mater. 5 1359
[25] Sun S S, Jia X P, Zhang Z F, Li Y, Yan B M, Liu X B, Ma H A 2013 J. Cryst. Growth 377 22
Catalog
Metrics
- Abstract views: 5505
- PDF Downloads: 401
- Cited By: 0