-
在Ni70Mn25Co5-C体系中添加含氢化合物Fe(C5H5)2作为新型氢源, 利用温度梯度法, 在压力为5.5-6.0 GPa、温度为1280-1400 ℃的条件下, 成功合成出氢掺杂的宝石级金刚石大单晶. 通过傅里叶显微红外光谱发现, 随着Fe(C5H5)2添加量的增加, 合成晶体中与氢相关的对应于sp3杂化C-H键的对称伸缩振动和反对称伸缩振动的红外特征峰2850和2920 cm-1逐渐增强, 而晶体中氮含量却逐渐减少. 通过合成晶体的拉曼光谱分析发现, 金刚石的拉曼峰伴随Fe(C5H5)2的添加向高频偏移, 这表明氢的进入在金刚石内部产生了压应力. 观察扫描电子显微镜图像发现, 在低含量Fe(C5H5)2添加时晶体表面平滑, 而高含量添加时晶体表面缺陷增多, 且呈现出气孔状. 使用新的添加剂Fe(C5H5)2作为氢源, 合成出含氢宝石级金刚石单晶, 丰富了金刚石单晶中对氢的研究内容, 也可为理解天然金刚石的形成机理提供帮助.
-
关键词:
- 氢掺杂金刚石大单晶 /
- Fe(C5H5)2添加剂 /
- 高温高压 /
- 温度梯度法
In this paper, a series of high-quality hydrogen-doped diamonds is successfully synthesized in Ni70Mn25Co5-C system by using Fe(C5H5)2 as hydrogen source at pressures ranging from 5.5 GPa to 6.0 GPa and temperatures of 1280-1400 ℃. We find that both pressure and temperature conditions strengthen with adding the Fe(C5H5)2. Scanning electron microscope micrographs show that the obtained diamonds at low levels of Fe(C5H5)2 additive have smooth surfaces. However, many defects are found and some pores appear on the diamond surface with increasing the Fe(C5H5)2 additive in the system. From the obtained Fourier transform infrared (IR) spectrum, we notice that there is no significant change of nitrogen concentration in the synthesized diamond with the Fe(C5H5)2 additive lower than 0.3 wt%, while the nitrogen concentration gradually decreases with the further increase of Fe(C5H5)2 additive. In the system with 0.5 wt% Fe(C5H5)2 additive, the nitrogen concentration in synthesized diamond is only half that of system without Fe(C5H5)2 additive. Meanwhile, the hydrogen associated IR peaks of 2850 cm-1 and 2920 cm-1 are gradually enhanced with the increase of Fe(C5H5)2 additive in the system, indicating that most of the hydrogen atoms in the synthesized diamond are incorporated into the crystal structure as sp3-CH2-symmetric (2850 cm-1) and sp3 CH2-antisymmetric (2920 cm-1) vibrations. From the obtained Raman spectrum, we find the incorporation of hydrogen impurity leads to a significant shift of the Raman peak towards higher frequencies from 1333.90 cm-1 to 1334.42 cm-1 with increasing the concentration of Fe(C5H5)2 additive from 0.1 wt% to 0.5 wt%, thereby giving rise to some compressive stress in the diamond crystal lattice. This is the first time that the gem-grade hydrogen-doped diamond single crystal, with size up to 3.5 mm has been successfully synthesized by using new hydrogen source Fe(C5H5)2 additive. We believe that our work can provide a new method to study the influence of hydrogen impurity on diamond synthesis and it will help us to further understand the genesis of natural diamond in the future.-
Keywords:
- hydrogen-doped diamond single crystal /
- Fe(C5H5)2 additives /
- high pressure high temperature /
- temperature gradient method
[1] Chrenko R M, Mcdonald R S, Darrow K A 1967 Nature 213 474
[2] Fesq H W, Bibby D M, Erasmus C S, Kable E J, Sellschop J P 1975 Phys. Chem. Earth. 9 817
[3] Palyanov Y N, Borzdov Y M, Khokhryakov A F, Kupriyanov I N, Sokol A G 2010 Cryst. Growth. Des. 10 3169
[4] Liu X B, Jia X P, Zhang Z F, Li Y, Hu M H, Zhou Z X, Ma H A 2011 Cryst. Growth. Des. 11 3844
[5] Liang Z Z, Kanda H, Jia X P, Ma H A, Zhu P W, Guan Q F, Zang C Y 2006 Carbon 44 913
[6] Zhang Y F, Zang C Y, Ma H A, Liang Z Z, Zhou L, Li S S, Jia X P 2008 Diamond Relat. Mater. 17 209
[7] Yu R Z, Ma H A, Liang Z Z, Liu W Q, Zheng Y J, Jia X P 2008 Diamond Relat. Mater. 17 180
[8] Borzdov Y, Pal’yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A 2002 Diamond Relat. Mater. 11 1863
[9] Goss J P 2003 J. Phys. : Condens. Matter 15 551
[10] Tachikawa H 2011 Chem. Phys. Lett. 513 94
[11] Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Bex P 2002 J. Phys.: Condens. Matter 14 11269
[12] Sun S S, Jia X P, Yan B M, Wang F B, Chen N, Li Y D, Ma H A 2014 Cryst. Eng. Commun. 16 2290
[13] Angus J C, Wang Y X, Sunkara M 1991 Annu. Rev. Mater. Sci. 21 221
[14] Kanda H, Akaishi M, Setaka N, Yamaoka S, Fukuanga O 1980 J. Mater. Sci. 15 2743
[15] Dischler B, Wild C, Mller-Sebert W, Koidl P 1993 Physica B 185 217
[16] Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 63 048101]
[17] Jia X P, Zhu P W, Wang T D, Zang C Y, Wang X C, Chen L X, Zou G T, Wakastuski W 2003 4th Zhengzhou International Superhard Materials and Related Products Conference Zhengzhou, China, August 29-September 2, 2003 p77
[18] Sung J C, Sung M, Sung E 2006 Thin Solid Films 498 212
[19] Han Q G, Ma H A, Zhou L, Zhang C, Tian Y, Jia X P 2007 Rev. Sci. Instrum. 78 113906
[20] Liu X B, Ma H A, Zhang Z F, Zhao M, Guo W, Li Y, Jia X P 2011 Diamond Relat. Mater. 20 468
[21] Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Sci. China: Phys. Mech. Astron. 55 781
[22] Burnsa R C, Hansena J O, Spitsa R A, Sibandaa M, Welbournb C M, Welcha D L 1999 Diamond Relat. Mater. 8 1433
[23] Liang Z Z, Liang J Q, Jia X P 2009 Chin. Phys. Lett. 26 038104
[24] Kanda H 2000 Braz. J. Phys. 30 482
[25] Kanda H, Sato Y, Setaka N, Ohsawa T, Fukunaga O 1981 Nippon Kagaku Kaishi 9 1349
[26] Zhou Z X, Jia X P, Li Y, Yan B M, Wang F B, Fang C, Chen N, Li Y D, Ma H A 2014 Acta Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 63 248104]
[27] Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101
[28] Hu M H, Li S S, Ma H A, Su T C, Li X L, Hu Q, Jia X P 2012 Chin. Phys. B 21 098101
-
[1] Chrenko R M, Mcdonald R S, Darrow K A 1967 Nature 213 474
[2] Fesq H W, Bibby D M, Erasmus C S, Kable E J, Sellschop J P 1975 Phys. Chem. Earth. 9 817
[3] Palyanov Y N, Borzdov Y M, Khokhryakov A F, Kupriyanov I N, Sokol A G 2010 Cryst. Growth. Des. 10 3169
[4] Liu X B, Jia X P, Zhang Z F, Li Y, Hu M H, Zhou Z X, Ma H A 2011 Cryst. Growth. Des. 11 3844
[5] Liang Z Z, Kanda H, Jia X P, Ma H A, Zhu P W, Guan Q F, Zang C Y 2006 Carbon 44 913
[6] Zhang Y F, Zang C Y, Ma H A, Liang Z Z, Zhou L, Li S S, Jia X P 2008 Diamond Relat. Mater. 17 209
[7] Yu R Z, Ma H A, Liang Z Z, Liu W Q, Zheng Y J, Jia X P 2008 Diamond Relat. Mater. 17 180
[8] Borzdov Y, Pal’yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A 2002 Diamond Relat. Mater. 11 1863
[9] Goss J P 2003 J. Phys. : Condens. Matter 15 551
[10] Tachikawa H 2011 Chem. Phys. Lett. 513 94
[11] Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Bex P 2002 J. Phys.: Condens. Matter 14 11269
[12] Sun S S, Jia X P, Yan B M, Wang F B, Chen N, Li Y D, Ma H A 2014 Cryst. Eng. Commun. 16 2290
[13] Angus J C, Wang Y X, Sunkara M 1991 Annu. Rev. Mater. Sci. 21 221
[14] Kanda H, Akaishi M, Setaka N, Yamaoka S, Fukuanga O 1980 J. Mater. Sci. 15 2743
[15] Dischler B, Wild C, Mller-Sebert W, Koidl P 1993 Physica B 185 217
[16] Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 63 048101]
[17] Jia X P, Zhu P W, Wang T D, Zang C Y, Wang X C, Chen L X, Zou G T, Wakastuski W 2003 4th Zhengzhou International Superhard Materials and Related Products Conference Zhengzhou, China, August 29-September 2, 2003 p77
[18] Sung J C, Sung M, Sung E 2006 Thin Solid Films 498 212
[19] Han Q G, Ma H A, Zhou L, Zhang C, Tian Y, Jia X P 2007 Rev. Sci. Instrum. 78 113906
[20] Liu X B, Ma H A, Zhang Z F, Zhao M, Guo W, Li Y, Jia X P 2011 Diamond Relat. Mater. 20 468
[21] Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Sci. China: Phys. Mech. Astron. 55 781
[22] Burnsa R C, Hansena J O, Spitsa R A, Sibandaa M, Welbournb C M, Welcha D L 1999 Diamond Relat. Mater. 8 1433
[23] Liang Z Z, Liang J Q, Jia X P 2009 Chin. Phys. Lett. 26 038104
[24] Kanda H 2000 Braz. J. Phys. 30 482
[25] Kanda H, Sato Y, Setaka N, Ohsawa T, Fukunaga O 1981 Nippon Kagaku Kaishi 9 1349
[26] Zhou Z X, Jia X P, Li Y, Yan B M, Wang F B, Fang C, Chen N, Li Y D, Ma H A 2014 Acta Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 63 248104]
[27] Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101
[28] Hu M H, Li S S, Ma H A, Su T C, Li X L, Hu Q, Jia X P 2012 Chin. Phys. B 21 098101
计量
- 文章访问数: 6418
- PDF下载量: 335
- 被引次数: 0