Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Neutron-induced inelastic scattering cross-section measurement of 52Cr

TAN Boyu WANG Zhaohui WU Hongyi HAN Yinlu XIAO Shiliang WANG Hao WANG Wenye WANG Jimin LI Yuzhao LIU Yingyi WANG Jincheng TAO Xi RUAN Xichao

Citation:

Neutron-induced inelastic scattering cross-section measurement of 52Cr

TAN Boyu, WANG Zhaohui, WU Hongyi, HAN Yinlu, XIAO Shiliang, WANG Hao, WANG Wenye, WANG Jimin, LI Yuzhao, LIU Yingyi, WANG Jincheng, TAO Xi, RUAN Xichao
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • With the development of next-generation reactors, the demand for higher precision in nuclear data has increased significantly to ensure operational efficiency and safety. Especially, inelastic scattering cross-section is one of the key parameters in nuclear reactor physics calculations, which directly affects neutron economy, thermal-hydraulic design, and safety analysis. Stainless steel is widely used in the nuclear industry. Chromium (Cr) is one of the main alloying elements in stainless steel, and 52Cr is the most abundant isotope in nature. However, the measurement of the inelastic scattering cross-section of 52Cr has not been explored in China, so the study of the 52Cr (n, n′ γ) reaction cross-section is crucial for nuclear reactor calculations. In this study, the neutron beams with energies of 5.62, 6.24, and 7.95 MeV via the D (d, n) 3He reaction are generated from the HI-13 tandem accelerator at the Institute of Atomic Energy in China. These neutrons are used to bombard a 52Cr target. Four CLOVER detectors are located at 30°, 70°, 110° and 150° relative to the beam direction in the horizontal plane. The prompt γ-ray method is used to measure the inelastic scattering cross-section by using an HPGe detector array. This is the first time that the cross-sections of five inelastic γ-rays with energies of 647.47 keV, 935.54 keV, 1333.65 keV, 1434.07 keV and 1530.67 keV have been obtained experimentally in China. Additionally, theoretical model calculations are performed to determine the inelastic scattering cross-sections of neutrons with energies below 20 MeV interacting with 52Cr. In the analysis of the experimental data, γ-ray self-absorption correction, neutron flux attenuation and multiple scattering correction are considered. The total experimental uncertainty includes the measurement uncertainty, correction term uncertainty, and standard cross-section uncertainty. The results show that the γ-ray production cross-sections obtained at the three neutron energy points are in good agreement with the data measured by Mihailescu et al. [Mihailescu L C, Borcea C, Koning A J, Plompen A J M 2007 Nucl. Phys. A 799 1] within the error margins, and the uncertainties are smaller. However, significant discrepancies are observed between the theoretical model calculations and the experimental data, which may be attributed to the lack of experimental information about the high-excitation-energy levels in the 52Cr level scheme. This study not only fills a gap in the measurement of the 52Cr inelastic scattering cross-section but also provides important nuclear data for designing and optimizing the next-generation reactors.
  • 图 1  瞬发γ射线法在线实验平台

    Figure 1.  Prompt γ-ray method online experimental platform.

    图 2  4个角度下测量52Cr(n, n′ γ)截面的CLOVER探测器阵列立体图

    Figure 2.  The 3 D schematic of the CLOVER detector array for measuring the cross section of 52Cr (n, n′ γ) at 4 detection angles.

    图 3  实验样品图

    Figure 3.  Image of the experimental sample.

    图 4  γ探测效率曲线

    Figure 4.  The γ detection efficiency curves.

    图 5  7.95 MeV中子诱发52Cr在束γ能谱

    Figure 5.  7.95 MeV neutron-induced 52Cr beam γ spectrum.

    图 6  52Cr (n, n′ γ)环境本底和用7.95 MeV入射中子在110°角度下得到的在束本底

    Figure 6.  52Cr (n, n′ γ) Background obtained with the room and 7.95 MeV incident neutron at a detection angle of 110°.

    图 7  48Ti的983.5 keV产生截面[18]

    Figure 7.  The 48Ti 983.5 keV production cross section[18].

    图 8  五个能量特征γ峰的产生截面 (a) 647.47 keV; (b) 935.54 keV; (c) 1333.65 keV; (d) 1434.07 keV; (e) 1530.67 keV

    Figure 8.  Production cross sections of the five energy characteristic γ peaks: (a) 647.47 keV; (b) 935.54 keV; (c) 1333.65 keV; (d) 1434.07 keV; (e) 1530.67 keV.

    图 9  52Cr非弹性散射截面

    Figure 9.  52Cr inelastic scattering cross section.

    表 1  文献中(EXFOR)部分(n, n′ γ)反应截面测量汇总[6]

    Table 1.  Summary of the main characteristics of (n, n′ γ) cross section measurements from the literature (EXFOR) [6].

    作者(年份) 实验设施 探测器 入射中子能量范围/MeV
    D.W.Van Patter(1962) Van de Graaff NaI 0.98—3.31
    F.Voss et al.(1975) Isochronous cyclotron Ge(Li) 0.5—10
    Olsen et al.(1975) Van de Graaff Ge(Li) 3—6
    A. A. Lychagin et al.(1988) Cockcroft-Walton accelerator NaI 14.1
    S.P.Simakov(1992) Weapons Neutron Research (WNR) NaI 14.1
    L.C. Mihailescu(2007) Linear accelerator EC Joint Research Centre, Geel 2 large volumn HPGe 非弹反应阈值—18
    D.N.Grozdanov(2020) TANGRA setup on the basis of ING-27 neutron generator Silicon detector, BGO, HPGe 14.1
    DownLoad: CSV

    表 2  不确定度来源

    Table 2.  Sources of uncertainty.

    符号 不确定度来源 数值/%
    ΔN 统计 3.5
    Δn 中子注量率 3.0
    Δm 样品定量 0.2
    Δε 探测效率 1.5
    Δc 修正项 3.0
    Δσ 标准截面 3.0
    Δtot 总不确定度 6.5
    DownLoad: CSV
    Baidu
  • [1]

    阮锡超 2023 核技术 46 080003Google Scholar

    Ruan X C 2023 Nucl. Tech. 46 080003Google Scholar

    [2]

    刘世龙, 葛智刚, 阮锡超, 陈永静 2020 原子能科学技术 54 65Google Scholar

    Liu S L, Ge Z G, Ruan X C, Chen Y J 2020 At. Energy Sci. Technol. 54 65Google Scholar

    [3]

    Aliberti G, Palmiotti G, Salvatores M, Stenberg C G 2004 Nucl. Sci. Eng. 146 13Google Scholar

    [4]

    Palmiotti G, Salvatores M 1984 Nucl. Sci. Eng. 87 333Google Scholar

    [5]

    Salvatores M, Palmiotti G 1985 Ann. Nucl. Energy 12 291Google Scholar

    [6]

    https://www-nds.iaea.org/exfor/servlet/X4sSearch5 [2024-11-6]

    [7]

    石宗仁 2002 原子核物理评论 19 42

    Shi Z R 2002 Nucl. Phys. Rev. 19 42

    [8]

    Mihailescu L C, Borcea C, Koning A J, Plompen A J M 2007 Nucl. Phys. A 799 1

    [9]

    孙琪, 王朝辉, 张奇玮, 黄翰雄, 任杰, 阮锡超, 刘世龙, 鲍杰, 栾广源, 丁琰琰, 陈雄军, 聂阳波, 刘超, 赵齐, 王金成, 贺国珠, 杜树斌 2022 原子能科学技术 56 816

    Sun Q, Wang Z H, Zhang Q W, Huang H X, Ren J, Ruan X C, Liu S L, Bao J, Luan G Y, Ding Y Y, Chen X J, Nie Y B, Liu C, Zhao Q, Wang J C, He G Z, Du S B 2022 At. Energy Sci. Technol. 56 816

    [10]

    Luo D W, Wu H Y, Li Z H, Xu C, Hua H, Li X Q, Wang X, Zhang S Q, Chen Z Q, Wu C G, Jin Y, Lin J 2021 Nucl. Sci. Tech. 32 79Google Scholar

    [11]

    Wu H Y, Li Z H, Tan H, Hua H, Li J, Henning W, Warburton W K, Luo D W, Wang X, Li X Q, Zhang S Q, Xu C, Chen Z Q, Wu C G, Jin Y, Lin J, Jiang D X, Ye Y L 2020 Nucl. Instrum. Methods Phys. Res. , Sect. A 975 164200Google Scholar

    [12]

    吴鸿毅, 李智焕, 吴婧, 华辉, 王翔, 李湘庆, 徐川 2021 科学通报 66 3553Google Scholar

    Wu H Y, Li Z H, Wu J, Hua H, Wang X, Li X Q, Xu C 2021 Chin. Sci. Bull. 66 3553Google Scholar

    [13]

    Tarasov O B, Bazin D 2016 Nucl. Instrum. Methods Phys. Res. , Sect. B 376 185Google Scholar

    [14]

    Schlegel D, Guldbakke S 2000 Monte Carlo 2000 Conference Lisbon, Portugal, October 23—26, 2000 p881

    [15]

    Hutcheson A, Angell C, Becker J A, Crowell A S, Dashdorj D, Fallin B, Fotiades N, Howell C R, Karwowski H J, Kawano T, Kelley J H, Kwan E, Macri R A, Nelson R O, Pedroni R S, Tonchev A P, Tornow W 2009 Phys. Rev. C 80 014603Google Scholar

    [16]

    Olliver H, Glasmacher T, Stuchbery A E 2003 Phys. Rev. C 68 044312Google Scholar

    [17]

    裴鹿成, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京: 科学出版社) 第163—174页

    Pei L C, Zhang X Z 1980 Monte Carlo Methods and Their Application in Particle Transport Problems (Beijing: Science Press) pp163—164

    [18]

    Dashdorj D, Mitchell G E, Becker J A, Agvaanluvsan U, Bernstein L A, Younes W, Garrett P E, Chadwick M B, Devlin M, Fotiades N, Kawano T, Nelson R O https://www-nds.iaea.org/exfor/servlet/X4sGetSubent?reqx=25411&subID=14162002&plus=1 [2024-11-6]

    [19]

    Zhang J S 2002 Nucl. Sci. Eng. 142 207Google Scholar

    [20]

    Koning A, Hilaire S, Goriely S 2023 Eur. Phys. J. A 59 131Google Scholar

  • [1] Xiao Shi-Liang, Wang Zhao-Hui, Wu Hong-Yi, Chen Xiong-Jun, Sun Qi, Tan Bo-Yu, Wang Hao, Qi Fu-Gang. Spectral analysis techniques in measuring neutron-induced gamma production cross-section. Acta Physica Sinica, doi: 10.7498/aps.73.20231980
    [2] He Tie1\2\3, Xiao Jun2\3, An Li2\3, Yang Jian2\3, Zheng Pu2\3A novel method to measure prompt fission neutron spectrum based on fission γ tagging technique. Acta Physica Sinica, doi: 10.7498/aps.67.20180563
    [3] Guan Na-Na. Effect of inelastic scattering process of gluons on dilepton productions of quark-gluon plasma. Acta Physica Sinica, doi: 10.7498/aps.65.142501
    [4] Di Bing, Wang Ya-Dong, Zhang Ya-Lin. The effect of interchain coupling on inelastic scattering of oppositely charged polarons. Acta Physica Sinica, doi: 10.7498/aps.62.107202
    [5] Deng Yi-Bing, Wang Shi-Lai. A study of the cross sections and the spin observables for proton-12C elastic scattering in momentum space in the intermediate energy region. Acta Physica Sinica, doi: 10.7498/aps.56.137
    [6] Zhou Ke-Jin, Yasuhisa Tezuka, Cui Ming-Qi, Ma Chen-Yan, Zhao Yi-Dong, Wu Zi-Yu, Akira Yagishita. Electronic structure of MnS studied by resonant inelastic soft X-ray scattering. Acta Physica Sinica, doi: 10.7498/aps.56.2986
    [7] Gu Yun-Ting, Feng Lu-Yan, Tao Jun-Quan, Huang Tian-Heng, Luo Chun, Ma Wei-Xing. Study of 46.8MeV p+12C inelastic scattering. Acta Physica Sinica, doi: 10.7498/aps.54.4666
    [8] FENG REN-FEI, WU SHU-LAN, JI QING, ZHU LIN-FAN, LIU XIAO-JING, XU KE-ZUN. THE ABSOLUTE ELASTIC DIFFERENTIAL CROSS-SECTIONS OF 2500eV ELECTRONS SCATTERED BY RARE GAS ATOMS. Acta Physica Sinica, doi: 10.7498/aps.47.1272
    [9] REN TING-QI, LIU SHENG-DIAN, ZHANG QING-GANG, ZHANG YI-CI. OPACITY FUNCTION FOR ROTATIONALLY INELASTIC SCATTERING OF Ar+N2 SYSTEM IN IT'S LONG-RANGE POTENTIALS. Acta Physica Sinica, doi: 10.7498/aps.43.1413
    [10] TAO FANG, ZHANG TAI-YONG, NIU SHI-WEN, GOU CHENG, SHI ZHONG-JIAN, LIN QUAN. INELASTIC NEUTRON SCATTERING STUDY ON ACOUSTICAL ACTIVITY OF Bi12GeO20 AND Bi12SiO20. Acta Physica Sinica, doi: 10.7498/aps.35.196
    [11] CAO MING-ZHONG, WANG FU-TUAN, WANG GEN-SHI, SONG DE-YING, CHEN GUI-YING, RUAN JING-HUI. THERMAL NEUTRON INELASTIC SCATTERING SPECTRA OF LaNi4.5Mn0.5Hx. Acta Physica Sinica, doi: 10.7498/aps.34.689
    [12] RUAN JING-HUI, CHENG ZHI-XU, CHEN GUI-YING. INELASTIC SCATTERING SPECTRA OF THERMAL NEUTRONS BY ALUMINIUM HYDRIDE (AlH3)n. Acta Physica Sinica, doi: 10.7498/aps.30.538
    [13] CHEN GUI-YING, CHENG ZHI-XU, WU XIAN-NAN, RUAN JING-HUI. THERMAL NEUTRON INELASTIC SCATTERING OF PALLADIUM HYDRIDES (PdHx). Acta Physica Sinica, doi: 10.7498/aps.29.257
    [14] ZHANG YU-SHUN, LI YANG-GUO. ELASTIC AND INELASTIC PROTON-NUCLEAR SCATTERING AT HIGH ENERGY. Acta Physica Sinica, doi: 10.7498/aps.26.449
    [15] CAO CHANG-QI, QIN DAN-HUA. DEEP INELASTIC ELECTRON-PROTON SCATTERING (Ⅱ). Acta Physica Sinica, doi: 10.7498/aps.25.308
    [16] CAO CHANG-QI, QIN DAN-HUA. DEEP INELASTIC ELECTRON-PROTON SCATTERING (Ⅰ). Acta Physica Sinica, doi: 10.7498/aps.25.197
    [17] . Acta Physica Sinica, doi: 10.7498/aps.24.115
    [18] . Acta Physica Sinica, doi: 10.7498/aps.24.458
    [19] LIU BING-TUNG, HO KUO-CHU. THE STUDY OF TWO-NUCLEON POTENTIAL IN NUCLEI BY MEANS OF INELASTIC SCATTERING. Acta Physica Sinica, doi: 10.7498/aps.22.569
    [20] FANG LI-ZHI, GU SHI-JIE. INELASTIC SCATTERING OF NEUTRONS IN FERROMAGNETICS WITH IMPERFECTIONS. Acta Physica Sinica, doi: 10.7498/aps.19.673
Metrics
  • Abstract views:  432
  • PDF Downloads:  41
  • Cited By: 0
Publishing process
  • Received Date:  28 November 2024
  • Accepted Date:  26 January 2025
  • Available Online:  17 February 2025

/

返回文章
返回
Baidu
map