搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

籽晶尺寸对宝石级金刚石单晶生长的影响

秦玉琨 肖宏宇 刘利娜 孙瑞瑞 胡秋波 鲍志刚 张永胜 李尚升 贾晓鹏

引用本文:
Citation:

籽晶尺寸对宝石级金刚石单晶生长的影响

秦玉琨, 肖宏宇, 刘利娜, 孙瑞瑞, 胡秋波, 鲍志刚, 张永胜, 李尚升, 贾晓鹏

Effects of seed crystal size on growth of gem-diamond single crystal

Qin Yu-Kun, Xiao Hong-Yu, Liu Li-Na, Sun Rui-Rui, Hu Qiu-Bo, Bao Zhi-Gang, Zhang Yong-Sheng, Li Shang-Sheng, Jia Xiao-Peng
PDF
HTML
导出引用
  • 本文在国产六面顶压机上, 在5.6 GPa, 1250—1450 ℃的高压高温条件下, 分别选用边长0.8, 1.5和2.2 mm三种尺寸的籽晶, 系统开展了Ib型宝石级金刚石单晶的生长研究. 文中系统考察了籽晶尺寸对宝石级金刚石单晶生长的影响. 首先, 考察了籽晶尺寸变化对宝石级金刚石单晶裂晶问题带来的影响. 研究得到了籽晶尺寸变大, 裂晶出现概率增加的晶体生长规律. 其次, 在25 h的生长时间内, 考察了上述三种尺寸籽晶生长金刚石单晶时, 生长时间与单晶极限生长速度的关系. 得到了选用大尺寸籽晶, 可以提高优质单晶合成效率、降低合成成本的研究结论. 借助扫描电子显微镜和光学显微镜, 对三种尺寸籽晶生长金刚石单晶的表面形貌进行了标定. 最后, 傅里叶微区红外测试, 对三种尺寸籽晶生长宝石级金刚石单晶的N杂质含量进行了表征. 研究得到了选用大尺寸籽晶实现快速生长金刚石的同时, 晶体的N杂质含量会随之升高的晶体生长规律.
    In the paper, under 5.6 GPa and 1250−1450 ℃, the Ib-ype diamond single crystals chosen as the seed crystals with different sizes, are synthesized in a cubic anvil at high pressure and high temperature. High-purity Fe-Ni-Co solvents are chosen as the catalysts. High-purity graphite powder (99.99%, purity) is selected as the carbon source. Hexahedral abrasive grade high-quality diamonds of 0.8 mm, 1.5 mm or 2.2 mm in diameter are chosen as seed crystals. The effects of seed crystal size on the growth of gem-diamond single crystal are studied in detail. Firstly, the influence of the change of seed size on the cracking of diamond single crystal is investigated. The crystal growth law of increasing the probability of cracking crystal with larger seed crystal is obtained. It can be attributed to the following two points. i) The residual cross section at the separation of the main crystal from the larger seed crystal is too large, thus reducing the overall compressive strength of the crystal. ii) The growth rate of the diamond crystal synthesized by larger seed crystal is too fast, which leads to the increase of impurities and defects and the decrease of compressive strength of the crystal. The decrease of crystal compressive strength leads to cracks in diamond crystals during cooling and depressurizing. Secondly, in the growth time of 25 hours, the relationships between the growth time and the limit growth rate of the diamond single crystals synthesized by choosing three sizes of seed crystals are investigated. The results show that the high-quality single crystal synthesis efficiency can be improved and the synthesis period can be shortened by selecting large seed crystals. This is because the size of the seed crystal becomes larger at each stage of crystal growth, resulting in the enhancement of the ability of diamond single crystal to receive carbon, so that high-quality diamond single crystals can be grown at a faster growth rate. Thirdly, with the help of scanning electron microscope or optical microscope, we calibrate the surface morphologies of diamond single crystals grown with different-size seed crystals. Using the seed crystals of 0.8 mm, 1.5 mm or 2.2 mm in diameter, high-quality diamond single crystals with smooth surfaces can be synthesized. However, with the increase of seed crystal in size, the surface flatness of the grown crystals tends to decrease and the possibility with which surface defects occur and string inclusions increase. The growth rate of high-quality diamond single crystals grown with larger seed crystals must be strictly controlled. Finally, the N impurity content values of diamond single crystals grown with different seed crystals in size are characterized by Fourier transform infrared measurement. The results show that the N impurity content of the crystal increases with the diamond growing rapidly by selecting larger seed crystal.
      通信作者: 肖宏宇, xiaohy0205@163.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 51801092)、河南省科技攻关项目(批准号: 162102210275, 172102210398, 172102210404)、河南省教育厅项目(批准号: 16A140012, 16A140044)、河南省高等学校骨干教师资助计划(批准号: 2015GGJS-112)和河南省高等学校重点科研项目(批准号: 18A430017, 19A140005)资助的课题.
      Corresponding author: Xiao Hong-Yu, xiaohy0205@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51801092), the Key Science and Technology Program of Henan Province, China (Grant Nos. 162102210275, 172102210398, 172102210404), the Research Foundation of Education Bureau of Henan Province, China (Grant Nos. 16A140012, 16A140044), the Foundation for University Key Teachers from the Education Commission of Henan Province, China (Grant No. 2015GGJS-112), and the Natural Science Foundation of the Higher Education Institutions of Henan Province, China (Grant Nos. 18A430017, 19A140005).
    [1]

    Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1955 Nature 176 51Google Scholar

    [2]

    Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1959 Nature 184 1094Google Scholar

    [3]

    Strong H M 1963 J. Phys. Chem. 39 2057Google Scholar

    [4]

    Traore A, Muret P, Fiori A, Eon D, Gheeraert E, Pernot J 2014 Appl. Phys. Lett. 104 052105Google Scholar

    [5]

    Sumiya H, Toda N, Satoh S 2002 J. Cryst. Growth 237-239 1281

    [6]

    Kanda H 2001 Radiat. Eff. Defects Solids 156 163Google Scholar

    [7]

    任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃 2017 66 208101Google Scholar

    Ren Z Y, Zhang J F, Zhang J C, Xu S D, Zhang C F, Quan R D, Hao Y 2017 Acta Phys. Sin. 66 208101Google Scholar

    [8]

    刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自立 2017 66 038103

    Liu Y J, He D W, Wang P, Tang M J, Xu C, Wang W D, Liu J, Liu G D, Kou Z L 2017 Acta Phys. Sin. 66 038103

    [9]

    Liu G Q, Pan X Y 2018 Chin. Phys. B 27 020304Google Scholar

    [10]

    Wu K P, Ma W F, Sun C X, Chen C Z, Ling L Y, Wang Z G 2018 Chin. Phys. B 27 058101Google Scholar

    [11]

    Berman L E, Hastings J B, Siddons D P, Koike M, Stojanoffand V, Hart M 1993 Nucl. Instrum. Methods 329 555Google Scholar

    [12]

    Freund A K 1995 Opt. Eng. 34 432Google Scholar

    [13]

    Koizumi S, Watanabe K, Hasegawa M, Kanda H 2001 Science 292 1899Google Scholar

    [14]

    Makino T, Tanimoto S, Hayashi Y, Kato H, Tokuda N, Ogura M, Takeuchi D, Oyama K, Ohashi H, Okushi H, Yamasaki S 2009 Appl. Phys. Lett. 94 262101Google Scholar

    [15]

    Xiao J W, Yang H Z, Wu X Z, Younus F, Li P, Wen B, Zhang X Y, Wang Y B, Tian Y J 2018 Sci. Adv. 4 8195

    [16]

    Sun S S, Xu Z Z, Cui W, Jia X P, Ma H A 2017 Chin. Phys. B 26 098101Google Scholar

    [17]

    Wang J K, Li S S, Jiang Q W, Song Y L, Yu K P, Han F, Su T C, Hu M H, Hu Q, Ma H A, Jia X P, Xiao H Y 2018 Chin. Phys. B 27 088102Google Scholar

    [18]

    Srimongkon K, Ohmagari S, Katoa Y, Amornkitbamrung V, Shikata S I 2016 Diam. Relat. Mater. 63 21Google Scholar

    [19]

    Palyanov Y N, Borzdov Y M, Kupriyanov I N, Bataleva Y V, Khohkhryakov A F 2015 Diam. Relat. Mater. 58 40Google Scholar

    [20]

    Li Y, Jia X P, Feng Y G, Fang C, Fan L J, Li Y D, Zeng X, Ma H A 2015 Chin. Phys. B 24 088104Google Scholar

    [21]

    Zhang H, Li S S, Su T C, Hu M H, Li G H, Man H A, Jia X P 2016 Chin. Phys. B 25 118104Google Scholar

    [22]

    Xiao H Y, Jia X P, Ma H A, Li S S, Li Y, Zhao M 2010 Chinese Sci. Bull. 55 1372Google Scholar

    [23]

    肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏 2018 67 140702Google Scholar

    Xiao H Y, Qin Y K, Liu L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S, Jia X P 2018 Acta Phys. Sin. 67 140702Google Scholar

  • 图 1  宝石级金刚石单晶的生长组装示意图

    Fig. 1.  Sample assembly to treat Gem-diamond single crystals.

    图 2  不同直径的籽晶生长金刚石大单晶的光学显微照片 (a) 0.8 mm; (b) 1.5 mm; (c), (d) 2.2 mm

    Fig. 2.  Optical photos of the diamonds using different seed-crystals in diameters: (a) 0.8 mm; (b) 1.5 mm; (c), (d) 2.2 mm.

    图 3  金刚石大单晶及剩余碳源的光学显微照片

    Fig. 3.  Optical photos of the diamonds and the carbon source.

    图 4  不同尺寸籽晶生长优质金刚石单晶的极限生长速度与合成时间关系曲线 (a) 0.8 mm; (b) 1.5 mm; (c) 2.2 mm

    Fig. 4.  Curves between the limit growth rate and the synthesis time of the high quality diamonds with different diameters of the seed-crystals: (a) 0.8 mm; (b) 1.5 mm; (c) 2.2 mm.

    图 5  不同尺寸籽晶生长金刚石单晶的SEM测试结果

    Fig. 5.  Scanning electron microscope photographs of diamond single crystals using different seed-crystals in diameters.

    图 6  金刚石单晶的微区FTIR测试 (a) 图2(a)所示晶体; (b) 图2(b)所示晶体; (c) 图2(c)所示晶体

    Fig. 6.  FTIR curves of diamond single crystals: (a) Diamond crystal of Fig. 2 (a); (b) diamond crystal of Fig. 2 (b); (c) diamond crystal of Fig. 2 (c).

    表 1  宝石级金刚石单晶生长组装内各部件名称

    Table 1.  Part names of gem-diamond sample assembly.

    序号 名称 序号 名称
    1 叶蜡石块 6 导电金属片
    2 白云石衬管 7 石墨发热管
    3 反应容器 8 碳素源
    4 触媒合金 9 金刚石单晶
    5 导电石墨片 10 密封、导电堵头
    下载: 导出CSV

    表 2  宝石级金刚石单晶的晶体参数及品质

    Table 2.  Parameters and quality of gem-diamond single crystals.

    样品 籽晶尺寸/mm 晶体尺寸/mm 生长速度/mg·h−1 晶体品质
    图2(a) 0.8 4.8 3.7 优质
    图2(b) 1.5 4.4 4.2 优质
    图2(c) 2.2 5.7 5.3 优质、少量包裹体
    图2(d) 2.2 5.4 6.1 劣质、裂晶
    下载: 导出CSV
    Baidu
  • [1]

    Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1955 Nature 176 51Google Scholar

    [2]

    Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1959 Nature 184 1094Google Scholar

    [3]

    Strong H M 1963 J. Phys. Chem. 39 2057Google Scholar

    [4]

    Traore A, Muret P, Fiori A, Eon D, Gheeraert E, Pernot J 2014 Appl. Phys. Lett. 104 052105Google Scholar

    [5]

    Sumiya H, Toda N, Satoh S 2002 J. Cryst. Growth 237-239 1281

    [6]

    Kanda H 2001 Radiat. Eff. Defects Solids 156 163Google Scholar

    [7]

    任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃 2017 66 208101Google Scholar

    Ren Z Y, Zhang J F, Zhang J C, Xu S D, Zhang C F, Quan R D, Hao Y 2017 Acta Phys. Sin. 66 208101Google Scholar

    [8]

    刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自立 2017 66 038103

    Liu Y J, He D W, Wang P, Tang M J, Xu C, Wang W D, Liu J, Liu G D, Kou Z L 2017 Acta Phys. Sin. 66 038103

    [9]

    Liu G Q, Pan X Y 2018 Chin. Phys. B 27 020304Google Scholar

    [10]

    Wu K P, Ma W F, Sun C X, Chen C Z, Ling L Y, Wang Z G 2018 Chin. Phys. B 27 058101Google Scholar

    [11]

    Berman L E, Hastings J B, Siddons D P, Koike M, Stojanoffand V, Hart M 1993 Nucl. Instrum. Methods 329 555Google Scholar

    [12]

    Freund A K 1995 Opt. Eng. 34 432Google Scholar

    [13]

    Koizumi S, Watanabe K, Hasegawa M, Kanda H 2001 Science 292 1899Google Scholar

    [14]

    Makino T, Tanimoto S, Hayashi Y, Kato H, Tokuda N, Ogura M, Takeuchi D, Oyama K, Ohashi H, Okushi H, Yamasaki S 2009 Appl. Phys. Lett. 94 262101Google Scholar

    [15]

    Xiao J W, Yang H Z, Wu X Z, Younus F, Li P, Wen B, Zhang X Y, Wang Y B, Tian Y J 2018 Sci. Adv. 4 8195

    [16]

    Sun S S, Xu Z Z, Cui W, Jia X P, Ma H A 2017 Chin. Phys. B 26 098101Google Scholar

    [17]

    Wang J K, Li S S, Jiang Q W, Song Y L, Yu K P, Han F, Su T C, Hu M H, Hu Q, Ma H A, Jia X P, Xiao H Y 2018 Chin. Phys. B 27 088102Google Scholar

    [18]

    Srimongkon K, Ohmagari S, Katoa Y, Amornkitbamrung V, Shikata S I 2016 Diam. Relat. Mater. 63 21Google Scholar

    [19]

    Palyanov Y N, Borzdov Y M, Kupriyanov I N, Bataleva Y V, Khohkhryakov A F 2015 Diam. Relat. Mater. 58 40Google Scholar

    [20]

    Li Y, Jia X P, Feng Y G, Fang C, Fan L J, Li Y D, Zeng X, Ma H A 2015 Chin. Phys. B 24 088104Google Scholar

    [21]

    Zhang H, Li S S, Su T C, Hu M H, Li G H, Man H A, Jia X P 2016 Chin. Phys. B 25 118104Google Scholar

    [22]

    Xiao H Y, Jia X P, Ma H A, Li S S, Li Y, Zhao M 2010 Chinese Sci. Bull. 55 1372Google Scholar

    [23]

    肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏 2018 67 140702Google Scholar

    Xiao H Y, Qin Y K, Liu L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S, Jia X P 2018 Acta Phys. Sin. 67 140702Google Scholar

  • [1] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响.  , 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [2] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程.  , 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [3] 江明全, 李欣, 房雷鸣, 谢雷, 陈喜平, 胡启威, 李强, 李青泽, 陈波, 贺端威. 基于PE型压机中子衍射高温高压组装的优化设计与实验验证.  , 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832
    [4] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展.  , 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [5] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法.  , 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [6] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究.  , 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [7] 王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇. Ib型金刚石大单晶的限形生长.  , 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [8] 肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏. 降温工艺对宝石级金刚石单晶品质的影响.  , 2018, 67(14): 140702. doi: 10.7498/aps.67.20180207
    [9] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥. B2O3添加宝石级金刚石单晶的生长特性.  , 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [10] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究.  , 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [11] 肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜. 合成腔体尺寸对Ib型六面体金刚石单晶生长的影响.  , 2016, 65(7): 070705. doi: 10.7498/aps.65.070705
    [12] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定.  , 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [13] 房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安. 添加Fe(C5H5)2合成氢掺杂金刚石大单晶及其表征.  , 2015, 64(12): 128101. doi: 10.7498/aps.64.128101
    [14] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响.  , 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [15] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能.  , 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [16] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究.  , 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [17] 秦杰明, 张莹, 曹建明, 田立飞. 纯铁触媒合成磨料级金刚石及表征.  , 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [18] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备.  , 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [19] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究.  , 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
    [20] 向 军, 李莉萍, 苏文辉. 钙钛矿型氧离子导体KNb1-xMgxO3-δ的制备和表征.  , 2003, 52(6): 1474-1478. doi: 10.7498/aps.52.1474
计量
  • 文章访问数:  10794
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-15
  • 修回日期:  2018-11-06
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回
Baidu
map