Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of hybrid superconducting devices and quantum transport based on one-dimensional electronic systems

DENG Xiaosong ZHANG Zhiyong KANG Ning

Citation:

Study of hybrid superconducting devices and quantum transport based on one-dimensional electronic systems

DENG Xiaosong, ZHANG Zhiyong, KANG Ning
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The hybrid system of low-dimensional electronic and superconducting materials has been an attractive structure for studying mesoscopic transport and low-dimensional superconducting properties. Low-dimensional structures with strong spin-orbit coupling exhibit rich quantum phenomena combined with superconducting macroscopic quantum states, becoming an important platform for exploring novel physical properties and developing new topological quantum devices. The construction of hybrid superconducting devices based on high-quality one-dimensional electronic materials, and the exploration of quantum transport phenomena at the interface emerge as research frontier. It is crucial to understand the characteristic scattering mechanism and quantum transport process in these hybrid systems at the nanoscale. The study of the coupling mechanism between the charge state and the topological localized state, and the experimental probe of the intrinsic transport properties of the topological states are the key issues, which enable the development of the new principles and methods for novel superconducting nanoelectronic devices and topological quantum devices. Due to the competition of multiple energy scales and complicated bound states in these hybrid structures, the device physics and measurement schemes present unprecedented challenges. This paper reviews recent advances in hybrid superconducting devices based on one-dimensional electronic systems, focusing on the material systems based on semiconducting nanowires and carbon nanotubes. Semiconducting nanowires with strong spin-orbit coupling and large Landau $g$-factor are expected to support Majorana bound states and require further improvements in the material quality, interface between superconductors and nanowires, understanding of the transport mechanism, and detection scheme. The construction strategies of extending topological phase space, including broken symmetry, helical modes, semiconducting characteristics, and attenuation of the external magnetic field, are proposed and discussed in hybrid superconducting devices based on carbon nanotubes. We briefly introduce the main phenomena and experimental challenges, ranging from material and device physics. Finally, this paper summarizes and gives an outlook on the development and transport studies of topological quantum devices based on one-dimensional systems.
  • 图 1  半导体纳米线与超导材料复合构筑拓扑量子器件. (a) 具有强自旋轨道耦合的一维体系在磁场下的色散关系. 体系中强自旋轨道耦合效应的存在使能带在k空间发生劈裂, 对应每个动量k都有确定的自旋方向[28]; (b) 复合体系中随化学势和磁场演化的电子相图. 在临界磁场之上, 磁场驱动体系发生拓扑超导相的相变[31]

    Figure 1.  Topological devices based on the hybrid superconductor-semiconductor nanowire structures. (a) Electronic dispersion of an one-dimensional quantum wire with strong spin-orbit coupling under applied magnetic field[28]. The presence of spin-orbit coupling results in the lifting of spin degeneracy. (b) The phase diagram for a proximitized semiconducting nanowire device as a function of the magnetic field and chemical potential. The interplay of spin–orbit coupling, Zeeman fields can drive a quantum phase transition into a topological superconductivity[31].

    图 2  构筑基于纳米线的量子点和超导干涉器件 (a) 基于单根InSb纳米线的器件SEM照片; (b) 纳米线复合器件中的Andreev束缚态能谱. (c)实现了复合器件中不同基态的栅极调控, 观察到0相与π相交替出现的安德烈夫束缚态[11]

    Figure 2.  The realization of the nanowire quantum dot-superconducting quantum interference device. (a)SEM image of a typical device, showing that individual InSb nanowire is in contact with superconducting electrodes. (b)Differential conductance $dI/dV$ map for the odd charge state as function of voltage bias $V_{sd}$ and backgate voltage $V_{g}$, indicating an Andreev bound state formed. (c)Differential conductance $dI/dV$ plot as a function of $V_{sd}$ and $V_{g}$ at 10 mK and zero magnetic field, demonstrating a realization of continuous gate-tunable Andreev bound states with both 0-type levels and π-type levels[11].

    图 3  拓扑态的固态量子器件构筑和探测. (a) 基于强自旋轨道耦合的二维电子气构筑超导界面和量子点接触的复合结构器件, 在磁场驱动下在拓扑相区域, 电导出现半整数的量子化平台[71]; (b) 三端非局域测量方案的器件构型, 用于区分安德烈夫和马约拉纳束缚态[72]; (c) 基于半导体纳米线与超导电极构筑耦合量子点的Kitaev链器件结构[81]. 实验通过栅极实现对交叉安德烈夫反射和弹性共隧穿过程的精确调控[80]

    Figure 3.  The realization and detection of the one-dimensional topological states in hybrid semiconductor–superconductor structures. (a) The conductance of a quantum point contact placed between superconductor and semiconducting wire with spin–orbit coupling[71]. (b) Three-terminal setup for probing Andreev and Majorana bound states with nonlocal measurement of conductance[72]. (c) Top panel: false color SEM microscopy of a fabricated nanowire device showing the realization of the Kitaev chain with coupled quantum dots through superconductor[81]. Illustration of the realization of the Kitaev chain with coupled quantum dots through superconductor, in which the coupling strength of crossed Andreev reflection and elastic co-tunnelling can be gate-tunable[80].

    图 4  单壁碳纳米管的能带结构与可调控性. (a) 碳纳米管卷曲矢量决定的金属型和半导体型碳纳米管能带结构[82]; (b) 基于碳纳米管的分离静电栅构筑的原位可控$PN$结结构; (c) 碳纳米管中随内建电场增加而逐渐降低的磁导拐点, 表明电场和磁场对碳纳米管能带结构的控制; 插图: 非单调磁导的温度依赖特性, 验证了磁导响应的机制[87]

    Figure 4.  Tunability of electronic band structure in single-wall carbon nanotubes. (a) Band structures of metallic and semiconducting carbon nanotubes determined by the chiral vector[82]. (b) In situ controllable $PN$ junction structure based on split gates of carbon nanotubes. (c) The magnetoconductance peaks move towards lower magnetic fields with increasing built-in electric fields in a carbon nanotube, demonstrating the control of the band structure of carbon nanotubes by electric and magnetic fields; Inset: temperature dependence of nonmonotonic magnetoconductance, suggesting the mechanism of the magnetic response[87].

    图 5  半导体型碳纳米管-超导薄膜异质结的拓扑态构建方案. (a) 半导体型碳纳米管-超导体异质结器件示意图, 在面内横向磁场下诱导出马约拉纳束缚态; (b) 马约拉纳束缚态能谱和局域波函数在磁场下的演化, 表明碳纳米管两端处磁场诱导的马约拉纳束缚态[110]

    Figure 5.  Topological state scheme based on semiconducting carbon nanotubes-superconducting films heterojunction. (a) Schematic diagram of a semiconducting carbon nanotube-superconductor heterojunction device, where Majorana bound states can be induced by in-plane transverse magnetic field. (b) Majorana bound states spectrum and wave function as a function of magnetic field, demonstrating the Majorana bound states in the ends of carbon nanotube induced by magnetic field[110].

    图 6  碳纳米管- TMD超导体异质结的拓扑态构建方案. (a) 碳纳米管- TMD超导体异质结器件示意图, 在轴向磁场和横向电场下诱导出马约拉纳束缚态; (b) 自旋轨道耦合、磁通效应、横向电场和伊辛近邻效应导致的半金属态碳纳米管; (c) 磁通和化学势的拓扑相图, –1表示拓扑相; (d) 电子-电子相互作用诱导的无磁场拓扑相图[119]; (e) 碳纳米管-薄层NbSe2近邻下的超导电流和相滑移[105]

    Figure 6.  Topological state scheme based on semiconducting carbon nanotubes-TMD superconductors heterojunction. (a) Schematic diagram of a carbon nanotube-TMD superconductor heterojunction device, where Majorana bound states can be arised by axial magnetic field and transverse electric field. (b) Semi-metallic carbon nanotubes induced by spin-orbit coupling, magnetic flux effect, transverse electric field and Ising proximity effect. (c) Topological phase diagram of magnetic flux and chemical potential, where –1 denotes topological phase. (d) Topological phase diagram induced by electron-electron interaction without magnetic field[119]. (e) Supercurrent and phase slip in a carbon nanotube with thin NbSe2 proximity[105].

    图 7  碳纳米管-超导体异质结的拓扑态电场构建方案. (a) 碳纳米管-超导体异质结器件示意图, 在横向电场下诱导出马约拉纳束缚态; (b) 低电场下, 只有一个能带分支形成p波配对; (c) 高电场下, 两个能带分支都形成p波配对[122]

    Figure 7.  Topological state scheme based on carbon nanotubes-superconductors heterojunction with electric field. (a) Schematic diagram of a carbon nanotube-superconductor heterojunction device, where Majorana bound states can be induced by strong transverse electric field. (b) One branch is in the p-wave phase at low electric field. (c) Both branches are in the p-wave phase at high electric field[122].

    图 8  基于周期性空间分布的化学势和磁场的一维拓扑器件构建方案. (a) 通过静电栅极阵列在一维体系中实现周期性化学势的调控; (b)通过纳米尺度磁体阵列或本征磁畴结构诱导产生周期性磁场[126]

    Figure 8.  Topological device scheme based on periodically and spatially modulated chemical potential and magnetic fields. (a) Periodically modulated chemical potentials induced by electrostatic gate arrays; (b) Periodically modulated magnetic field induced by nanomagnetic arrays or intrinsic domain structure in magnetic substrates[126].

    Baidu
  • [1]

    Winkelmann C B, Roch N, Wernsdorfer W, Bouchiat V and Balestro F 2009 Nat. Phys. 5 876Google Scholar

    [2]

    De Franceschi S, Kouwenhoven L, Schönenberger C and Wernsdorfer W 2010 Nat. Nanotechnol. 5 703Google Scholar

    [3]

    Doh Y J, van Dam J A, Roest A L, Bakkers E P A M, Kouwenhoven L P and De Franceschi S 2005 Science 309 272Google Scholar

    [4]

    Jarillo-Herrero P, van Dam J A and Kouwenhoven L P 2006 Nature 439 953Google Scholar

    [5]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K and Morpurgo A F 2007 Nature 446 56Google Scholar

    [6]

    Qu F M, Yang F, Shen J, Ding Y, Chen J, Ji Z Q, Liu G T, Fan J, Jing X N, Yang C L and Lu L 2012 Sci. Rep. 2 339Google Scholar

    [7]

    Veldhorst M, Snelder M, Hoek M, Gang T, Guduru V K, Wang X L, Zeitler U, van der Wiel W G, Golubov A A, Hilgenkamp H and Brinkman A 2012 Nat. Mater. 11 417Google Scholar

    [8]

    Bockrath M, Cobden D H, Lu J, Rinzler A G, Smalley R E, Balents L and McEuen P L 1999 Nature 397 598Google Scholar

    [9]

    Deshpande V V, Chandra B, Caldwell R, Novikov D S, Hone J and Bockrath M 2009 Science 323 106Google Scholar

    [10]

    Deshpande V V and Bockrath M 2008 Nat. Phys. 4 314Google Scholar

    [11]

    Li S, Kang N, Caroff P and Xu H Q 2017 Phys. Rev. B 95 014515Google Scholar

    [12]

    Hensgens T, Fujita T, Janssen L, Li X, Van Diepen C J, Reichl C, Wegscheider W, Das Sarma S and Vandersypen L M K 2017 Nature 548 70Google Scholar

    [13]

    Xiang J, Vidan A, Tinkham M, Westervelt R M and Lieber C M 2006 Nat. Nanotechnol. 1 208Google Scholar

    [14]

    He J J, Tanaka Y and Nagaosa N 2023 Nat. Commun. 14 3330Google Scholar

    [15]

    Herrmann L G, Portier F, Roche P, Yeyati A L, Kontos T and Strunk C 2010 Phys. Rev. Lett. 104 026801Google Scholar

    [16]

    Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [17]

    Maeno Y, Ikeda A, and Mattoni G 2024 Nat. Phys. 20 1712Google Scholar

    [18]

    Dutta B, Umansky V, Banerjee M and Heiblum M 2022 Science 377 1198Google Scholar

    [19]

    Fu L, and Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [20]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [21]

    Yang F, Ding Y, Qu F M, Shen J, Chen J, Wei Z C, Ji Z Q, Liu G T, Fan J, Yang C L, Xiang T and Lu L 2012 Phys. Rev. B 85 104508Google Scholar

    [22]

    Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H and Gao H J 2018 Science 362 333Google Scholar

    [23]

    徐磊, 李沛岭, 吕昭征, 沈洁, 屈凡明, 刘广同, 吕力 2023 72 177401Google Scholar

    Xu L, Li P L, Lü Z Z, Shen J, Qu F M, Liu G T and Lü L 2023 Acta Phys. Sin. 72 177401Google Scholar

    [24]

    初纯光, 王安琦, 廖志敏 2023 72 087401Google Scholar

    Chu C G L, Wang A Q and Liao Z M 2023 Acta Phys. Sin. 72 087401Google Scholar

    [25]

    Qi J J, Chen C Z, Song J T, Liu J, He K, Sun Q F and Xie X C 2025 Sci. China Phys. Mech. Astron. 68 227401Google Scholar

    [26]

    吕博赛, 娄硕, 沈沛约, 史志文 2024 物理 53 683Google Scholar

    Lyu B S, Lou S, Shen P Y and Shi Z W 2024 PHYSICS 53 683Google Scholar

    [27]

    Yazdani A, von Oppen F, Halperin B I and Yacoby A 2023 Science 380 1235

    [28]

    Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001Google Scholar

    [29]

    Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002Google Scholar

    [30]

    Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M and Oreg Y 2018 Nat. Rev. Mater. 3 52Google Scholar

    [31]

    Dmytruk O and Klinovaja J 2018 Phys. Rev. B 97 155409Google Scholar

    [32]

    Nichele F, Chesi S, Hennel S, Wittmann A, Gerl C, Wegscheider W, Loss D, Ihn T and Ensslin K 2014 Phys. Rev. Lett. 113 046801Google Scholar

    [33]

    Miserev D S, Srinivasan A, Tkachenko O A, Tkachenko V A, Farrer I, Ritchie D A, Hamilton A R and Sushkov O P 2017 Phys. Rev. Lett. 119 116803Google Scholar

    [34]

    Nilsson H A, Caroff P, Thelander C, Larsson M, Wagner J B, Wernersson L E, Samuelson L and Xu H Q 2009 Nano Lett. 9 3151Google Scholar

    [35]

    Fasth C, Fuhrer A, Samuelson L, Golovach V N and Loss D 2007 Phys. Rev. Lett. 98 266801Google Scholar

    [36]

    Pribiag V S, Nadj-Perge S, Frolov S M, van den Berg J W G, van Weperen I, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2013 Nat. Nanotechnol. 8 170Google Scholar

    [37]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887Google Scholar

    [38]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414Google Scholar

    [39]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346 602Google Scholar

    [40]

    Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M and Ando Y 2011 Phys. Rev. Lett. 107 217001Google Scholar

    [41]

    Fornieri A, Whiticar A M, Setiawan F, Marin E P, Drachmann A C C, Keselman A, Gronin S, Thomas C, Wang T, Kallaher R, Gardner G C, Berg E, Manfra M J, Stern A, Marcus C M and Nichele F 2019 Nature 569 89Google Scholar

    [42]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [43]

    Prada E, San-Jose P, de Moor M W A, Geresdi A, Lee E J H, Klinovaja J, Loss D, Nygård J, Aguado R and Kouwenhoven L P 2020 Nat. Rev. Phys. 2 575Google Scholar

    [44]

    Li S, Kang N, Fan D X, Wang L B, Huang Y Q, Caroff P and Xu H Q 2016 Sci. Rep. 6 24822Google Scholar

    [45]

    Plissard S R, van Weperen I, Car D, Verheijen M A, Immink G W G, Kammhuber J, Cornelissen L J, Szombati D B, Geresdi A, Frolov S M, Kouwenhoven L P and Bakkers E P A M 2013 Nat. Nanotechnol. 8 859Google Scholar

    [46]

    He J, Pan D, Yang G, Liu M, Ying J, Lyu Z, Fan J, Jing X, Liu G, Lu B, Liu D E, Zhao J, Lu L and Qu F 2020 Phys. Rev. B 102 075121Google Scholar

    [47]

    Luthi F, Stavenga T, Enzing O W, Bruno A, Dickel C, Langford N K, Rol M A, Jespersen T S, Nygård J, Krogstrup P and DiCarlo L 2018 Phys. Rev. Lett. 120 100502Google Scholar

    [48]

    Hays M, Fatemi V, Bouman D, Cerrillo J, Diamond S, Serniak K, Connolly T, Krogstrup P, Nygård J, Levy Yeyati A, Geresdi A and Devoret M H 2021 Science 373 430Google Scholar

    [49]

    Thomas C, Hatke A T, Tuaz A, Kallaher R, Wu T, Wang T, Diaz R E, Gardner G C, Capano M A and Manfra M J 2018 Phys. Rev. Mater. 2 104602Google Scholar

    [50]

    Lee J S, Shojaei B, Pendharkar M, Feldman M, Mukherjee K and Palmstrøm C J 2019 Phys. Rev. Mater. 3 014603Google Scholar

    [51]

    Lei Z, Lehner C A, Cheah E, Karalic M, Mittag C, Alt L, Scharnetzky J, Wegscheider W, Ihn T and Ensslin K 2019 Appl. Phys. Lett. 115 012101Google Scholar

    [52]

    Mittag C, Karalic M, Lei Z, Thomas C, Tuaz A, Hatke A T, Gardner G C, Manfra M J, Ihn T and Ensslin K 2019 Phys. Rev. B 100 075422Google Scholar

    [53]

    Microsoft Quantum 2023 Phys. Rev. B 107 245423Google Scholar

    [54]

    Krogstrup P, Ziino N L B, Chang W, Albrecht S M, Madsen M H, Johnson E, Nygård J, Marcus C M and Jespersen T S 2015 Nat. Mater. 14 400Google Scholar

    [55]

    Vaitiekėnas S, Krogstrup P and Marcus C M 2020 Phys. Rev. B 101 060507Google Scholar

    [56]

    Deng M T, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P and Marcus C M 2016 Science 354 1557Google Scholar

    [57]

    Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P and Marcus C M 2016 Nature 531 206Google Scholar

    [58]

    Albrecht S M, Hansen E B, Higginbotham A P, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P, Danon J, Flensberg K and Marcus C M 2017 Phys. Rev. Lett. 118 137701Google Scholar

    [59]

    Bordin A, Wang G, Liu C-X, ten Haaf S L D, van Loo N, Mazur G P, Xu D, van Driel D, Zatelli F, Gazibegovic S, Badawy G, Bakkers E P A M, Wimmer M, Kouwenhoven L P and Dvir T 2023 Phys. Rev. X 13 031031

    [60]

    Mazur G P, van Loo N, van Driel D, Wang J Y, Badawy G, Gazibegovic S, Bakkers E P A M and Kouwenhoven L P 2022 arXiv: 2211. 14283 [cond-mat.supr-con]

    [61]

    Pendharkar M, Zhang B, Wu H, Zarassi A, Zhang P, Dempsey C P, Lee J S, Harrington S D, Badawy G, Gazibegovic S, Op het Veld R L M, Rossi M, Jung J, Chen A-H, Verheijen M A, Hocevar M, Bakkers E P A M, Palmstrøm C J and Frolov S M 2021 Science 372 508Google Scholar

    [62]

    Kanne T, Marnauza M, Olsteins D, Carrad D J, Sestoft J E, de Bruijckere J, Zeng L, Johnson E, Olsson E, Grove-Rasmussen K and Nygård J 2021 Nat. Nanotechnol. 16 776Google Scholar

    [63]

    Vaitiekėnas S, Liu Y, Krogstrup P and Marcus C M 2021 Nat. Phys. 17 43Google Scholar

    [64]

    Liu Y, Vaitiekėnas S, Martí-Sánchez S, Koch C, Hart S, Cui Z, Kanne T, Khan S A, Tanta R, Upadhyay S, Cachaza M E, Marcus C M, Arbiol J, Moler K A and Krogstrup P 2020 Nano Lett. 20 456Google Scholar

    [65]

    Vaitiekėnas S, Winkler G W, van Heck B, Karzig T, Deng M T, Flensberg K, Glazman L I, Nayak C, Krogstrup P, Lutchyn R M and Marcus C M 2020 Science 367 1442

    [66]

    Valentini M, Peñaranda F, Hofmann A, Brauns M, Hauschild R, Krogstrup P, San-Jose P, Prada E, Aguado R and Katsaros G 2021 Science 373 82Google Scholar

    [67]

    Woods B D, Das Sarma S and Stanescu T D 2019 Phys. Rev. B 99 161118Google Scholar

    [68]

    San-Jose P, PayáC, Marcus C M, Vaitiekėnas S and Prada E 2023 Phys. Rev. B 107 155423Google Scholar

    [69]

    San-Jose P, Prada E and Aguado R 2012 Phys. Rev. Lett. 108 257001Google Scholar

    [70]

    Legg H F, Laubscher K, Loss D and Klinovaja J 2023 Phys. Rev. B 108 214520Google Scholar

    [71]

    Wimmer M, Akhmerov A R, Dahlhaus J P and Beenakker C W J 2011 New. J. Phys. 13 053016Google Scholar

    [72]

    Danon J, Hellenes A B, Hansen E B, Casparis L, Higginbotham A P and Flensberg K 2020 Phys. Rev. Lett. 124 036801Google Scholar

    [73]

    Pikulin D I, van Heck B, Karzig T, Martinez E A, Nijholt B, Laeven T, Winkler G W, Watson J D, Heedt S, Temurhan M, Svidenko V, Lutchyn R M, Thomas M, de Lange G, Casparis L and Nayak C 2021 arXiv: 2103. 12217. [cond-mat.mes-hall]

    [74]

    Hess R, Legg H F, Loss D and Klinovaja J 2023 Phys. Rev. Lett. 130 207001Google Scholar

    [75]

    Rosdahl T Ö, Vuik A, Kjaergaard M and Akhmerov A R 2018 Phys. Rev. B 97 045421Google Scholar

    [76]

    Banerjee A, Lesser O, Rahman M A, Thomas C, Wang T, Manfra M J, Berg E, Oreg Y, Stern A and Marcus C M 2023 Phys. Rev. Lett. 130 096202Google Scholar

    [77]

    Pan H, Sau J D and Das Sarma S 2021 Phys. Rev. B 103 014513Google Scholar

    [78]

    Tsintzis A, Souto R S, Flensberg K, Danon J and Leijnse M 2024 PRX Quantum 5 010323Google Scholar

    [79]

    Leijnse M and Flensberg K 2012 Phys. Rev. B 86 134528Google Scholar

    [80]

    Dvir T, Wang G, van Loo N, Liu C X, Mazur G P, Bordin A, ten Haaf S L D, Wang J Y, van Driel D, Zatelli F, Li X, Malinowski F K, Gazibegovic S, Badawy G, Bakkers E P A M, Wimmer M and Kouwenhoven L P 2023 Nature 614 445Google Scholar

    [81]

    Bordin A, Li X, van Driel D, Wolff J C, Wang Q, ten Haaf S L D, Wang G, van Loo N, Kouwenhoven L P and Dvir T 2024 Phys. Rev. Lett. 132 056602Google Scholar

    [82]

    Laird E A, Kuemmeth F, Steele G A, Grove-Rasmussen K, Nygård J, Flensberg K and Kouwenhoven L P 2015 Rev. Mod. Phys. 87 703Google Scholar

    [83]

    Minot E D, Yaish Y, Sazonova V, Park J Y, Brink M and McEuen P L 2003 Phys. Rev. Lett. 90 156401Google Scholar

    [84]

    Minot E D, Yaish Y, Sazonova V and McEuen P L 2004 Nature 428 536Google Scholar

    [85]

    Jhang S H, Marganska M, Skourski Y, Preusche D, Grifoni M, Wosnitza J and Strunk C 2011 Phys. Rev. Lett. 106 096802Google Scholar

    [86]

    Deshpande V V, Chandra B, Caldwell R, Novikov D S, Hone J and Bockrath M 2009 Science 323 106Google Scholar

    [87]

    Deng X, Gong K, Wang Y, Liu Z, Jiang K, Kang N and Zhang Z 2023 Phys. Rev. Lett. 130 207002Google Scholar

    [88]

    Jin Z, Chu H B, Wang J Y, Hong J X, Tan W C and Li Y 2007 Nano Lett. 7 2073Google Scholar

    [89]

    Wang X S, Li Q Q, Xie J, Jin Z, Wang J Y, Li Y, Jiang K L and Fan S S 2009 Nano Lett. 9 3137Google Scholar

    [90]

    Kong J, Yenilmez E, Tombler T W, Kim W, Dai H J, Laughlin R B, Liu L, Jayanthi C S and Wu S Y 2001 Phys. Rev. Lett. 87 106801Google Scholar

    [91]

    Liang W J, Bockrath M, Bozovic D, Hafner J H, Tinkham M and Park H 2001 Nature 411 665Google Scholar

    [92]

    Javey A, Guo J, Wang Q, Lundstrom M and Dai H J 2003 Nature 424 654Google Scholar

    [93]

    Zhang Z Y, Liang X L, Wang S, Yao K, Hu Y F, Zhu Y Z, Chen Q, Zhou W W, Li Y, Yao Y G, Zhang J and Peng L M 2007 Nano Lett. 7 3603Google Scholar

    [94]

    Urgell C, Yang W, De Bonis S L, Samanta C, Esplandiu M J, Dong Q, Jin Y and Bachtold A 2020 Nat. Phys. 16 32Google Scholar

    [95]

    Wen Y, Ares N, Schupp F J, Pei T, Briggs G A D and Laird E A 2020 Nat. Phys. 16 75Google Scholar

    [96]

    Wang S, Zhao S H, Shi Z W, Wu F Q, Zhao Z Y, Jiang L L, Watanabe K, Taniguchi T, Zettl A, Zhou C W and Wang F 2020 Nat. Mater. 19 986Google Scholar

    [97]

    Wu C C, Liu C H and Zhong Z H 2010 Nano Lett. 10 1032Google Scholar

    [98]

    Pei F, Laird E A, Steele G A and Kouwenhoven L P 2012 Nat. Nanotechnol. 7 630Google Scholar

    [99]

    Zhang R F, Ning Z Y, Zhang Y Y, Xie H H, Zhang Q, Qian W Z, Chen Q and Wei F 2013 Nanoscale 5 6584Google Scholar

    [100]

    Zhang R F, Ning Z Y, Zhang Y Y, Zheng Q S, Chen Q, Xie H H, Zhang Q, Qian W Z and Wei F 2013 Nat. Nanotechnol. 8 912Google Scholar

    [101]

    Zhang R F, Zhang Y Y, Zhang Q, Xie H H, Wang H D, Nie J Q, Wen Q and Wei F 2013 Nat. Commun. 4 1727Google Scholar

    [102]

    Shen B Y, Zhu Z X, Zhang J Y, Xie H H, Bai Y X and Wei F 2018 Adv. Mater. 30 1705844Google Scholar

    [103]

    Kasumov A Y, Deblock R, Kociak M, Reulet B, Bouchiat H, Khodos I I, Gorbatov Y B, Volkov V T, Journet C and Burghard M 1999 Science 284 1508Google Scholar

    [104]

    Mergenthaler M, Schupp F J, Nersisyan A, Ares N, Baumgartner A, Schönenberger C, Briggs G A D, Leek P J and Laird E A 2021 Mater. Quantum. Technol. 1 035003Google Scholar

    [105]

    Bauml C, Bauriedl L, Marganska M, Grifoni M, Strunk C and Paradiso N 2021 Nano Lett. 21 8627Google Scholar

    [106]

    Sau J D and Tewari S 2013 Phys. Rev. B 88 054503Google Scholar

    [107]

    Huertas-Hernando D, Guinea F and Brataas A 2006 Phys. Rev. B 74 155426Google Scholar

    [108]

    Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310Google Scholar

    [109]

    Kuemmeth F, Ilani S, Ralph D C and McEuen P L 2008 Nature 452 448Google Scholar

    [110]

    Marganska M, Milz L, Izumida W, Strunk C and Grifoni M 2018 Phys. Rev. B 97 075141Google Scholar

    [111]

    Milz L, Izumida W, Grifoni M and Marganska M 2019 Phys. Rev. B 100 155417Google Scholar

    [112]

    Zhou B T, Yuan N F Q, Jiang H L and Law K T 2016 Phys. Rev. B 93 180501Google Scholar

    [113]

    Xi X X, Wang Z F, Zhao W W, Park J H, Law K T, Berger H, Forro L, Shan J and Mak K F 2016 Nat. Phys. 12 139Google Scholar

    [114]

    Saito Y, Nakamura Y, Bahramy M S, Kohama Y, Ye J T, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M, Nojima T, Yanase Y and Iwasa Y 2016 Nat. Phys. 12 144Google Scholar

    [115]

    Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T and Ye J T 2015 Science 350 1353Google Scholar

    [116]

    Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwasa Y 2012 Science 338 1193Google Scholar

    [117]

    de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X D, Xiao D and Hunt B M 2018 Nat. Commun. 9 1427Google Scholar

    [118]

    Fatemi V, Wu S F, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 362 926Google Scholar

    [119]

    Lesser O, Shavit G and Oreg Y 2020 Phys. Rev. Res. 2 023254Google Scholar

    [120]

    Han T Y, Shen J Y, Yuan N F Q, Lin J X Z, Wu Z F, Wu Y Y, Xu S G, An L H, Long G, Wang Y W, Lortz R and Wang N 2018 Phys. Rev. B 97 060505Google Scholar

    [121]

    Kim M, Park G H, Lee J, Lee J H, Park J, Lee H, Lee G H and Lee H J 2017 Nano Lett. 17 6125Google Scholar

    [122]

    Klinovaja J, Gangadharaiah S and Loss D 2012 Phys. Rev. Lett. 108 196804Google Scholar

    [123]

    Klinovaja J, Schmidt M J, Braunecker B and Loss D 2011 Phys. Rev. Lett. 106 156809Google Scholar

    [124]

    Klinovaja J, Schmidt M J, Braunecker B and Loss D 2011 Phys. Rev. B 84 085452Google Scholar

    [125]

    Egger R and Flensberg K 2012 Phys. Rev. B 85 235462Google Scholar

    [126]

    Murra P, Inotani D, and Nitta M 2022 Phys. Rev. B 105 214525Google Scholar

    [127]

    Desjardins M M, Contamin L C, Delbecq M R, Dartiailh M C, Bruhat L E, Cubaynes T, Viennot J J, Mallet F, Rohart S, Thiaville A, Cottet A and Kontos T 2019 Nat. Mater. 18 1060Google Scholar

    [128]

    Klinovaja J, Stano P and Loss D 2012 Phys. Rev. Lett. 109 236801Google Scholar

    [129]

    Klinovaja J, Stano P, Yazdani A and Loss D 2013 Phys. Rev. Lett. 111 186805Google Scholar

    [130]

    Kjaergaard M, Wolms K and Flensberg K 2012 Phys. Rev. B 85 020503Google Scholar

    [131]

    Klinovaja J and Loss D 2013 Phys. Rev. X 3 011008

    [132]

    Cottet A, Kontos T and Doucot B 2013 Phys. Rev. B 88 195415Google Scholar

    [133]

    van Woerkom D J, Proutski A, van Heck B, Bouman D, Vayrynen J I, Glazman L I, Krogstrup P, Nygard J, Kouwenhoven L P and Geresdi A 2017 Nat. Phys. 13 876Google Scholar

    [134]

    Vayrynen J I, Rastelli G, Belzig W and Glazman L I 2015 Phys. Rev. B 92 134508Google Scholar

    [135]

    Dartiailh M C, Kontos T, Doucot B and Cottet A 2017 Phys. Rev. Lett. 118 126803Google Scholar

    [136]

    Mergenthaler M, Nersisyan A, Patterson A, Esposito M, Baumgartner A, Schönenberger C, Briggs G A D, Laird E A and Leek P J 2021 Phys. Rev. Appl. 15 064050Google Scholar

    [137]

    Fatin G L, Matos-Abiague A, Scharf B and Zutic I 2016 Phys. Rev. Lett. 117 077002Google Scholar

    [138]

    Liu L J, Han J, Xu L, Zhou J S, Zhao C Y, Ding S J, Shi H W, Xiao M M, Ding L, Ma Z, Jin C H, Zhang Z Y and Peng L M 2020 Science 368 850Google Scholar

    [139]

    Mukhopadhyay R, Kane C L and Lubensky T C 2001 Phys. Rev. B 64 045120Google Scholar

  • [1] WANG Yu, LIANG Yulin, XING Yanxia. Topological Anderson insulator phase in graphene. Acta Physica Sinica, doi: 10.7498/aps.74.20241031
    [2] Jiang Long-Xing, Li Qing-Chao, Zhang Xu, Li Jing-Feng, Zhang Jing, Chen Zu-Xin, Zeng Min, Wu Hao. Spintronic devices based on topological and two-dimensional materials. Acta Physica Sinica, doi: 10.7498/aps.73.20231166
    [3] Gao Jian-Hua, Sheng Xin-Li, Wang Qun, Zhuang Peng-Fei. Relativistic spin transport theory for spin-1/2 fermions. Acta Physica Sinica, doi: 10.7498/aps.72.20222470
    [4] Ding Jin-Ting, Hu Pei-Jia, Guo Ai-Min. Electron transport in graphene nanoribbons with line defects. Acta Physica Sinica, doi: 10.7498/aps.72.20230502
    [5] Liu Tian, Li Zong-Liang, Zhang Yan-Hui, Lan Kang. Study of quantum speed limit of of transport process of single quantum dot system in dissipative environment. Acta Physica Sinica, doi: 10.7498/aps.72.20222159
    [6] Jiang Da, Yu Dong-Yang, Zheng Zhan, Cao Xiao-Chao, Lin Qiang, Liu Wu-Ming. Research progress of material, physics, and device of topological superconductors for quantum computing. Acta Physica Sinica, doi: 10.7498/aps.71.20220596
    [7] Fang Jing-Yun, Sun Qing-Feng. Thermal dissipation of electric transport in graphene p-n junctions in magnetic field. Acta Physica Sinica, doi: 10.7498/aps.71.20220029
    [8] Hu Hai-Tao, Guo Ai-Min. Quantum transport properties of bilayer borophene nanoribbons. Acta Physica Sinica, doi: 10.7498/aps.71.20221304
    [9] Preparation of niobium based superconducting qubits and auxiliary devices. Acta Physica Sinica, doi: 10.7498/aps.70.20211865
    [10] Zheng Dong-Ning. Superconducting quantum interference devices. Acta Physica Sinica, doi: 10.7498/aps.70.20202131
    [11] Wu Xin-Yu, Han Wei-Hua, Yang Fu-Hua. Quantum transport relating to impurity quantum dots in silicon nanostructure transistor. Acta Physica Sinica, doi: 10.7498/aps.68.20190095
    [12] Yan Jie, Wei Miao-Miao, Xing Yan-Xia. Dephasing effect of quantum spin topological states in HgTe/CdTe quantum well. Acta Physica Sinica, doi: 10.7498/aps.68.20191072
    [13] Yan Rui, Wu Ze-Wen, Xie Wen-Ze, Li Dan, Wang Yin. First-principles study on transport property of molecular} device with non-collinear electrodes. Acta Physica Sinica, doi: 10.7498/aps.67.20172221
    [14] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, doi: 10.7498/aps.64.097202
    [15] Zhang Cai-Xia, Guo Hong, Yang Zhi, Luo You-Hua. The magnetic and quantum transport properties of sandwich-structured Tan(B3N3H6)n+1 clusters. Acta Physica Sinica, doi: 10.7498/aps.61.193601
    [16] Sun Wei-Feng. First-principles study of (InAs)1/(GaSb)1 superlattice atomic chains. Acta Physica Sinica, doi: 10.7498/aps.61.117104
    [17] Fu Bang, Deng Wen-Ji. General solutions to spin transportation of electrons through equilateral polygon quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, doi: 10.7498/aps.59.2739
    [18] Li Peng, Deng Wen-Ji. Exact solutions to the transportation of electrons through equilateral polygonal quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, doi: 10.7498/aps.58.2713
    [19] Yin Yong-Qi, Li Hua, Ma Jia-Ning, He Ze-Long, Wang Xuan-Zhang. Quantum transport of multi-terminal coupled-quantum-dot-molecular bridge. Acta Physica Sinica, doi: 10.7498/aps.58.4162
    [20] Li Hong, Guo Hua-Zhong, Lu Chuan, Li Ling, Gao Jie. Electronic properties of quantum wires in surface-acoustic-wave based single-electron transport devices. Acta Physica Sinica, doi: 10.7498/aps.57.5863
Metrics
  • Abstract views:  879
  • PDF Downloads:  27
  • Cited By: 0
Publishing process
  • Available Online:  24 January 2025

/

返回文章
返回
Baidu
map