Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Citation:

Airborne absolute gravity measurements based on quantum gravimeter

ZHAI Chenjie, WANG Jing, ZHOU Junjie, WANG Yu, TANG Xiaoming, ZHOU Yin, ZHANG Can, LI Rui, SHU Qing, WANG Kainan, WANG Shuangquan, JIN Zixing, HUA Shan, SUN Yiren, WANG Zhenghao, MA Zhixiang, CAI Minghao, WANG Xiaolong, WU Bin, LIN Qiang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • High-precision gravity field mapping plays a critical role in geological survey, resource exploration, and geoid modeling. The traditional ground-based static absolute gravity measurements possess high accuracy, but they are fundamentally constrained by low operational efficiency and inability to survey complex terrains such as river networks, lakes, and mountainous regions. This study tries to address these limitations through the development of an airborne absolute gravity measurement system based on quantum gravimeters. At a flight altitude of 1022 m and a speed of 240 km/h of the airplane, after a filtering process of 3 km, the measured gravity value shows a standard deviation of approximately 8.86 mGal. Furthermore, a comparative analysis with the EGM2008 gravity model shows a residual standard deviation of 8.16 mGal, validating the consistency of the system with established geophysical references. The experimental results confirm the operational feasibility of quantum gravimeters in scenarios of airborne dynamic measurement, demonstrating the viability of this technological framework for high-resolution gravity field mapping.
  • 图 1  机载绝对重力测量系统组成及其测量原理图

    Figure 1.  System composition of the airborne absolute gravity measurement system and the basic measurement principle.

    图 2  测试飞机及重力测量系统现场照片

    Figure 2.  Picture of aircraft and the absolute gravity measurement systems.

    图 3  倾斜调制实验数据(图中黑点为实测重力值, 红色曲线为正弦函数拟合曲线) (a) 重力值随横摇角度变化; (b) 重力值随纵摇角度变化

    Figure 3.  Experimental data for tilt modulation, the black dots are the measured gravity values and the red curve is the fitted curve with the sine function: (a) Change of measured gravity values as the roll angle; (b) change of measured gravity values as the pitch angle.

    图 4  (a) 不同T的拟合曲线, 其中实心红、蓝、黑点分别为T = 10 ms, T = 12 ms, T = 14 ms时的原子布居数, 实线为其对应拟合曲线; (b) 静态测量灵敏度; (c) 静态测量重力值

    Figure 4.  (a) The fitted curves for different T, where the red, blue, and black dots are the atomic population at T = 10 ms, T = 12 ms, and T = 14 ms, respectively, the solid lines are their corresponding fitted curves; (b) static measured sensitivity; (c) static measured gravity values.

    图 5  飞行路线(红线为重力测线, 橙线为往返路线)

    Figure 5.  Trace of flight. The red line is the pratical measurement route, and the orange line is the take-off and landing route.

    图 6  飞机的状态参数 (a) 高度; (b) 速度; (c) 横滚角; (d) 俯仰角

    Figure 6.  Detailed parameters of the airplane during the flight: (a) Flight altitude; (b) flight speed; (c) roll angle; (d) pitch angle.

    图 7  飞行环境下的振动信号 (a) 时域振动信号; (b) 振动信号功率谱

    Figure 7.  Vibration signals in the case of flying: (a) Time-domain vibration signals; (b) power spectrum of vibration signals.

    图 8  飞行环境下的温湿度变化 (a), (b) 分别是温湿度变化曲线, 其中红线、蓝线、黑线分别为AG-1探头、机舱、AG-1控制器内部的温湿度变化; (c)光路模块的温湿度变化

    Figure 8.  Variations of temperature and humidity during the flight campaign: (a), (b) Temperature and humidity change curves, where the red, blue and black lines are the data measured in AG-1 sensor, cabin and AG-1 controller, respectively; (c) temperature and humidity variation in the optical module.

    图 9  机载绝对重力测量结果 (a) 重力数据处理结果(灰色实线为原始重力数据, 蓝色实线为Eötvös修正量, 红色实线为经过Eötvös修正和滤波后的修正重力值); (b) 实测航空重力数据与模型计算数据的对比(黑色实线为基于EIGEN-6C2模型计算的重力数据, 蓝色实线为基于EGM2008模型计算的重力数据, 红色实线为实测的航空重力数据)

    Figure 9.  Measurement results of absolute gravity with airborne platform: (a) Gravity correction results. The gray line denotes the original gravity data, the blue line represents the gravity value dues to Eötvös correction, while the red line illustrates the gravity values after the Eötvös correction and filtering; (b) comparison of measured airborne gravity data with the data obtained with gravity models, black line is the gravity data calculated by the EIGEN-6C2 gravity model, blue line is the gravity data calculated by EGM2008 gravity model, and red line are the measured gravity airborne data.

    表 1  噪声来源及其引起的重力值偏差

    Table 1.  Budget of noise sources and their resulted gravity deviations.

    噪声来源 引起的重力值偏差/mGal
    振动噪声 >103
    Eötvös效应 0—37
    惯性稳定平台姿态控制残余噪声 ≈10–3
    飞行高度变化 0—0.8
    DownLoad: CSV
    Baidu
  • [1]

    Zhang C G, Chen J G, Song M Y, Wang J K, Yuan B Q 2015 Pol. Marit. Res. 22 100Google Scholar

    [2]

    Nusbaum U, Rusnak I, Klein I 2019 Navigation-US 66 681Google Scholar

    [3]

    张倩文, 徐亚, 褚伟, 路书鹏 2024 中国科学: 地球科学 67 1836Google Scholar

    Zhang Q W, Xu Y, Chu W, Lu S P 2024 Sci. China-Earth Sci. 67 1836Google Scholar

    [4]

    Reager J T, Thomas B F, Famiglietti J S 2014 Nat. Geosci. 7 588Google Scholar

    [5]

    Vidal-Vega A I, Trejo-Soto M E, Tocho C N, Romero-Andrade R, Nayak K 2024 J. South Am. Earth Sci. 148 105192Google Scholar

    [6]

    Elshewy M A, Thanh P T, Elsheshtawy A M, Refaat M, Freeshah M 2024 Egypt. J. Remote Sens. Space Sci. 27 656

    [7]

    Mcleod D P, King B T, Stedman G E, Schreiber K U, Vvrebb T H 2001 Fluct. Noise Lett. 1 R41Google Scholar

    [8]

    Zhu H R, Huang P W, Gao B, Tang B, Chen X, Hong J Q, Ang J, Zhong J Q 2024 Opt. Express 32 26157Google Scholar

    [9]

    Wu B, Li D R, Zhou Y, Zhu D, Zhao Y P, Qiao Z K, Cheng B, Niu J Y, Guo X C, Wang X L, Lin Q 2024 IEEE Sens. J. 24 9536Google Scholar

    [10]

    Ruan C J, Zhuang W, Yao J M, Zhao Y, Ma Z H, Yi C, Tian Q, Wu S Q, Fang F, Wen Y H 2024 Sensors 24 2395Google Scholar

    [11]

    Li C Y, Long J B, Huang M Q, Chen B, Yang Y M, Jiang X, Xiang C F, Ma Z L, He D Q, Chen L K, Chen S 2023 Phys. Rev. A 108 032811Google Scholar

    [12]

    Ménoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300Google Scholar

    [13]

    Chen J L, Cazenave A, Dahle C, Llovel W, Panet I, Pfeffer J, Moreira L 2022 Surv. Geophys. 43 305Google Scholar

    [14]

    Huang C, Li A, Qin F, Gong W, Che H, Chen X, Fang J, Wang W, Zhou Y 2024 IEEE Sens. J. 24 32368Google Scholar

    [15]

    Huang C F, Li A, Qin F J, Fang J, Chen X 2023 Meas. Sci. Technol. 34 11

    [16]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geodesy 94 20Google Scholar

    [17]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 627Google Scholar

    [18]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Bonnin A, Bernard J, Cadoret M, Jensen T E, Forsberg R, Salaun C, Lucas S, Lequentrec-Lalancette M F, Rouxel D, Gabalda G, Seoane L, Vu D T, Bruinsma S, Bonvalot S 2023 J. Geophys. Res. Solid Earth 128 1

    [19]

    Wu B, Zhao Y P, Zhou Y, Yuan W W, Li D R, Bao S N, Zhu D, Cheng B, Wu L Y, Zhou J C, Qiao Z K, Wang X L, Lin Q 2024 IEEE Sens. J. 24 23527Google Scholar

    [20]

    Qiao Z K, Yuan P, Hu R, Zhou H, Wang Q Y, Zhang J J, Zhou H Q, Zhu L Y, Zhu D, Shi H Y, Zhou F, Wu B, Zhou Y, Lin Q 2024 IEEE Sens. J. 24 10620Google Scholar

    [21]

    Zhou Y, Wang W Z, Ge G G, Li J T, Zhang D F, He M, Tang B, Zhong J Q, Zhou L, Li R B, Mao N, Che H, Qian L Y, Li Y, Qin F J, Fang J, Chen X, Wang J, Zhan M S 2024 Sensors 24 1016Google Scholar

    [22]

    Wu B, Zhang C, Wang K N, Cheng B, Zhu D, Li R, Wang X L, Lin Q, Qiao Z K, Zhou Y 2023 IEEE Sens. J. 23 24292Google Scholar

    [23]

    Zhou Y, Wu L Y, Wu B, Cheng B, Wang H L, Chen L W, Gao S T, Lin Q 2020 Geophysics 85 G115Google Scholar

    [24]

    赵远, 郭梅影, 许云鹏, 胡栋, 王宇, 杨永军 2024 计测技术 44 115Google Scholar

    Zhao Y, Guo M Y, Xu Y P, Hu D, Wang Y, Yang Y J 2024 Metrol. Meas. Technol. 44 115Google Scholar

    [25]

    Zhu D, Liu N K, Cheng B, Cao P F, Wu B, Wang K N, Wu L M, Weng K X, Zhou Y, Bian J L, Wang X L, Lin Q 2024 Opt. Express 32 40554Google Scholar

    [26]

    Chen P J, Jiang M R, lv X F, Zhou H, Yang D, Zhou Y, Jin Z F, Peng S P 2024 Heliyon 10 e23936Google Scholar

    [27]

    Chen P J, Zhou Y, Zhu D, Wang K N, Zhang C, Wang K, Peng S P, Cheng B, Wu B, Lin Q 2024 Appl. Phys. B 130 111

  • [1] WANG Enlong, WANG Guochao, ZHU Lingxiao, BIAN Jintian, MO Xiaojuan, KONG Hui. Optical ring cavity for homogeneous quantum nondemolition measurement in atom interferometer. Acta Physica Sinica, doi: 10.7498/aps.74.20241348
    [2] Liu Yan-Xin, Wang Zhi-Hui, Guan Shi-Jun, Wang Qin-Xia, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Atoms loading and cooling for an optical cavity assisted by Λ-enhanced gray-molasses cooling process. Acta Physica Sinica, doi: 10.7498/aps.73.20240182
    [3] Cheng Yong-Jun, Dong Meng, Sun Wen-Jun, Wu Xiang-Min, Zhang Ya-Fei, Jia Wen-Jie, Feng Cun, Zhang Rui-Fang. Ultra-high vacuum measurement based on 7Li cold atoms manipulation. Acta Physica Sinica, doi: 10.7498/aps.73.20241215
    [4] Ye Liu-Xian, Xu Yun-Peng, Wang Qiao-Wei, Cheng Bing, Wu Bin, Wang He-Lin, Lin Qiang. Optimization and control of cold atom interference phase shift based on laser double-sideband suppression. Acta Physica Sinica, doi: 10.7498/aps.72.20221711
    [5] Zhai Hui. Non-equilibrium quantum many-body physics with ultracold atoms. Acta Physica Sinica, doi: 10.7498/aps.72.20231375
    [6] Zhang Su-Zhao, Sun Wen-Jun, Dong Meng, Wu Hai-Bin, Li Rui, Zhang Xue-Jiao, Zhang Jing-Yi, Cheng Yong-Jun. Vacuum pressure measurement based on 6Li cold atoms in a magneto-optical trap. Acta Physica Sinica, doi: 10.7498/aps.71.20212204
    [7] Wang Kai-Nan, Xu Han, Zhou Yin, Xu Yun-Peng, Song Wei, Tang Hong-Zhi, Wang Qiao-Wei, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Cheng Bing, Li De-Zhao, Qiao Zhong-Kun, Wu Bin, Lin Qiang. Research on rapid surveying and mapping of outfield absolute gravity based on vehicle-mounted atomic gravimeter. Acta Physica Sinica, doi: 10.7498/aps.71.20220267
    [8] Che Hao, Li An, Fang Jie, Ge Gui-Guo, Gao Wei, Zhang Ya, Liu Chao, Xu Jiang-Ning, Chang Lu-Bin, Huang Chun-Fu, Gong Wen-Bin, Li Dong-Yi, Chen Xi, Qin Fang-Jun. Ship-borne dynamic absolute gravity measurement based on cold atom gravimeter. Acta Physica Sinica, doi: 10.7498/aps.71.20220113
    [9] Li Mo, Chen Fei-Liang, Luo Xiao-Jia, Yang Li-Jun, Zhang Jian. Fundamental principles, key enabling technologies, and research progress of atom chips. Acta Physica Sinica, doi: 10.7498/aps.70.20201561
    [10] Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhang Kai-Jun, Zhu Dong, Wang Kai-Nan, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship. Acta Physica Sinica, doi: 10.7498/aps.70.20201522
    [11] Wu Bin, Zhou Yin, Cheng Bing, Zhu Dong, Wang Kai-Nan, Zhu Xin-Xin, Chen Pei-Jun, Weng Kan-Xing, Yang Qiu-Hai, Lin Jia-Hong, Zhang Kai-Jun, Wang He-Lin, Lin Qiang. Static measurement of absolute gravity in truck based on atomic gravimeter. Acta Physica Sinica, doi: 10.7498/aps.69.20191765
    [12] He Tian-Chen, Li Ji. Measurement of gravity acceleration by cold atoms in a harmonic trap using Kapitza-Dirac pulses. Acta Physica Sinica, doi: 10.7498/aps.68.20190749
    [13] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, doi: 10.7498/aps.67.20181121
    [14] Huang Xin-Yao, Xiang Yu, Sun Feng-Xiao, He Qiong-Yi, Gong Qi-Huang. Planar quantum squeezing and atom interferometry. Acta Physica Sinica, doi: 10.7498/aps.64.160304
    [15] Xiong Zong-Yuan, Yao Zhan-Wei, Wang Ling, Li Run-Bin, Wang Jin, Zhan Ming-Sheng. Control of atomic path in projectile cold atom gyroscope. Acta Physica Sinica, doi: 10.7498/aps.60.113201
    [16] Qiu Ying, He Jun, Wang Yan-Hua, Wang Jing, Zhang Tian-Cai, Wang Jun-Min. Loading and cooling of cesium atoms in 3D optical lattice. Acta Physica Sinica, doi: 10.7498/aps.57.6227
    [17] Jiang Kai-Jun, Li Ke, Wang Jin, Zhan Ming-Sheng. Dependence of number of trapped atoms on the experimental parameters of Rb magneto-optical trap. Acta Physica Sinica, doi: 10.7498/aps.55.125
    [18] Tang Lin, Huang Jian-Hua, Duan Zheng-Lu, Zhang Wei-Ping, Zhou Zhao-Ying, Feng Yan-Ying, Zhu Rong. Quantum tunnelling time of cold atom passing through a laser beam. Acta Physica Sinica, doi: 10.7498/aps.55.6606
    [19] Geng Tao, Yan Shu-Bin, Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min. Temperature measurement of cold atoms in a cesium magneto-optical trap by means of short-distance time-of-flight absorption spectrum. Acta Physica Sinica, doi: 10.7498/aps.54.5104
    [20] Luo You-Hua, Huang Zheng, Wang Yu-Zhu. . Acta Physica Sinica, doi: 10.7498/aps.51.1706
Metrics
  • Abstract views:  459
  • PDF Downloads:  40
  • Cited By: 0
Publishing process
  • Received Date:  21 November 2024
  • Accepted Date:  18 January 2025
  • Available Online:  09 February 2025

/

返回文章
返回
Baidu
map