Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal dissipation of electric transport in graphene p-n junctions in magnetic field

Fang Jing-Yun Sun Qing-Feng

Citation:

Thermal dissipation of electric transport in graphene p-n junctions in magnetic field

Fang Jing-Yun, Sun Qing-Feng
PDF
HTML
Get Citation
  • Graphene, a special two-dimensional material, has a unique band structure that allows the type and concentration of carriers to be controlled through a gate voltage, and it has potential applications in bipolar nanoelectronic devices. In this paper, based on the tight-binding model of graphene p-n junctions, by using the nonequilibrium Green’s function method and Landauer-Büttiker formula, the thermal dissipation of electric transport in graphene p-n junctions in a magnetic field is investigated. Under a strong magnetic field, both sides of the junction are in the quantum Hall regime, thus the topologically protected chiral edge states appear. Intuitively, the topologically protected chiral edge states are dissipationless. However, the results show that thermal dissipation can occur in the quantum Hall regime in graphene junctions in the presence of dissipation sources, although the topologically protected chiral edge states still exist. In clean graphene junctions, thermal dissipation occurs mainly at the edge for the unipolar transport, but it occurs both at the edge and at the interface of the junctions for the bipolar transport. In the presence of disorder, thermal dissipation is significantly enhanced both in the unipolar junction and in the bipolar junction, and it increases with disorder strength increasing. Besides, the energy distribution of electrons at different positions is also studied, which shows that the thermal dissipation always occurs as long as the energy distribution is in nonequilibrium. This indicates that the topology can protect only the propagation direction of electrons, but it can not suppress the occurrence of thermal dissipation.
      Corresponding author: Sun Qing-Feng, sunqf@pku.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303301) and the National Natural Science Foundation of China (Grant No. 11921005).
    [1]

    von Klitzing K, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [3]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [4]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [5]

    Halperin 1982 Phys. Rev. B 25 2185Google Scholar

    [6]

    von Klitzing K 2019 Phys. Rev. Lett. 122 200001Google Scholar

    [7]

    Tang F, Ren Y, Wang P, Zhong R, Schneeloch J, Yang S A, Yang K, Lee P A, Gu G, Qiao Z, Zhang L 2019 Nature 569 537Google Scholar

    [8]

    Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge: Cambridge University Press) p293

    [9]

    Büttiker M 1988 Phys. Rev. B 38 9375Google Scholar

    [10]

    Laughlin 1981 Phys. Rev. B 23 5632Google Scholar

    [11]

    Laughlin 1983 Phys. Rev. Lett. 50 1395Google Scholar

    [12]

    Halbertal D, Cuppens J, Shalom M B, Embon L, Shadmi N, Anahory Y, Naren H R, Sarkar J, Uri A, Ronen Y, Myasoedov Y, Levitov L S, Joselevich E, Geim A K, Zeldov E 2016 Nature 539 407Google Scholar

    [13]

    Halbertal D, Shalom M B, Uri A, Bagani K, Meltzer A Y, Marcus I, Myasoedov Y, Birkbeck J, Levitov L S, Geim A K, Zeldov E 2017 Science 358 1303Google Scholar

    [14]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [15]

    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337Google Scholar

    [16]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [17]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [18]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [19]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379Google Scholar

    [20]

    Semenoff G W 1984 Phys. Rev. Lett. 53 2449Google Scholar

    [21]

    Gusynin V P, Sharapov S G 2005 Phys. Rev. Lett. 95 146801Google Scholar

    [22]

    Marguerite A, Birkbeck J, Aharon-Steinberg A, Halbertal D, Bagani K, Marcus I, Myasoedov Y, Geim K, Perello D J, Zeldov E 2019 Nature 575 628Google Scholar

    [23]

    Zhang G, Gornyi I V, Mirlin A D 2020 Phys. Rev. Res. 2 013337Google Scholar

    [24]

    Fang J Y, Yang N X, Yan Q, Guo A M, Sun Q F 2021 Phys. Rev. B 104 115411Google Scholar

    [25]

    Aharon-Steinberg A, Marguerite A, Perello D J, Bagani K, Holder T, Myasoedov Y, Levitov L S, Geim A K, Zeldov E 2021 Nature 593 528Google Scholar

    [26]

    Anahory Y, Naren H R, Lachman E O, Buhbut Sinai S, Uri A, Embon L, Yaakobi E, Myasoedov Y, Huber M E, Klajn R, Zeldov E 2020 Nanoscale 12 3174Google Scholar

    [27]

    Huard B, Sulpizio J A, Stander N, Todd K, Yang B, Goldhaber-Gordon D 2007 Phys. Rev. Lett. 98 236803Google Scholar

    [28]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, Morpurgo A F 2007 Nature 446 56Google Scholar

    [29]

    Williams J R, DiCarlo L, Marcus C M 2007 Science 317 638Google Scholar

    [30]

    Özyilmaz B, Jarillo-Herrero P, Efetov D, Abanin D A, Levitov L S, Kim P 2007 Phys. Rev. Lett. 99 166804Google Scholar

    [31]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620Google Scholar

    [32]

    Stander N, Huard B, Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807Google Scholar

    [33]

    Cheianov V V, Fal’ko V, Altshuler B L 2007 Science 315 1252Google Scholar

    [34]

    Rycerz A, Tworzydlo Beenakker C W J 2007 Nat. Phys. 3 172Google Scholar

    [35]

    Abanin D A, Levitov L S 2007 Science 317 641Google Scholar

    [36]

    Lohmann T, von Klitzing K, Smet J H 2009 Nano Lett. 9 1973Google Scholar

    [37]

    Wang K, Harzheim A, Taniguchi T, Watanabei K, Lee J U, Kim P 2019 Phys. Rev. Lett. 122 146801Google Scholar

    [38]

    Meir Y, Wingreen N S 1992 Phys. Rev. Lett. 68 2512Google Scholar

    [39]

    Jauho A P, Wingreen N S, Meir Y 1994 Phys. Rev. B 50 5528Google Scholar

    [40]

    Büttiker M 1986 Phys. Rev. Lett. 57 1761Google Scholar

    [41]

    Sheng D N, Sheng L, Weng Z Y 2006 Phys. Rev. B 73 233406Google Scholar

    [42]

    Sun Q F, Xie X C 2010 Phys. Rev. Lett. 104 066805Google Scholar

    [43]

    Long W, Sun Q F, Wang J 2008 Phys. Rev. Lett. 101 166806Google Scholar

    [44]

    Li J, Shen S Q 2008 Phys. Rev. B 78 205308Google Scholar

    [45]

    Sancho M P L, Sancho J M L, Rubio J 1985 J. Phys. F: Met. Phys. 15 851Google Scholar

    [46]

    Tian J, Jiang Y, Childres I, Cao H, Hu J, Chen Y P 2013 Phys. Rev. B 88 125410Google Scholar

    [47]

    Chen J C, Au Yeung T C, Sun Q F 2010 Phys. Rev. B 81 245417Google Scholar

  • 图 1  (a) 锯齿型石墨烯p-n结示意图, 红色格点表示在这些格点上耦合了虚拟导线, 图中$ D=4, N=12, L=11, M=3 $; (b), (c) 不同无序强度W下电导G随着$ {E}_{\mathrm{R}} $的变化曲线. 当$ \mathrm{W}\ne 0 $时, 无序构型平均取$ 2000 $次. 图(b)中$ {E}_{\mathrm{L}}=-0.1 $($ {\nu }_{\mathrm{L}}=1 $), 图(c)中$ {E}_{\mathrm{L}}=-0.2 $($ {\nu }_{\mathrm{L}}=3 $)

    Figure 1.  (a) Schematic diagram for a zigzag graphene p-n junction. The red sites indicate that virtual leads are coupled to these sites, and $ D=4, N=12, L=11, M=3 $ in this diagram. (b), (c) The conductance G vs. $ {E}_{\mathrm{R}} $ for different disorder strengths W. Here the conductance is averaged up to 2000 configurations when $ W\ne 0 $. The parameters $ {E}_{\mathrm{L}}=-0.1 $ ($ {\nu }_{\mathrm{L}}=1 $) in panel (b), $ {E}_{\mathrm{L}}=-0.2 $ ($ {\nu }_{\mathrm{L}}=3 $) in panel (c).

    图 2  局域热产生$ {Q}_{\mathrm{L}} $随着格点位置坐标$ (x, y) $的变化, 带箭头的黑色实线代表手性边缘态的数目和传播方向. 符号■, ▲, ◆, ●, ★标记的位置分别是$ (10,  10) $, $ \left(\mathrm{46, 10}\right) $, $ \left(\mathrm{46, 100}\right) $, $ \left(\mathrm{46, 190}\right) $, $ \left(\mathrm{10, 190}\right) $, 在图4中将给出这些位置上的电子能量分布. $ \left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right) $=$ (-0.1, -0.1) $ (a)$ , (-0.2, -0.1) $ (b), $ (-\mathrm{0.1, 0.1}) $ (c), $ (-\mathrm{0.2, 0.2}) $ (d), 分别对应左右填充因子$ ({\nu }_{\mathrm{L}}, {\nu }_{\mathrm{R}})=\left(\mathrm{1, 1}\right) $ (a), $ \left(\mathrm{3, 1}\right) $ (b), $ (1, -1) $ (c), $ (3, -3) $ (d)

    Figure 2.  Local heat generation $ {Q}_{\mathrm{L}} $ vs. lattice position $ (x, y) $, the black solid lines with arrows represent the number and propagation direction of the chiral edge states. Positions marked by symbols ■, ▲, ◆, ●, ★ are, respectively, $ \left(\mathrm{10, 10}\right) $, $ \left(\mathrm{46, 10}\right) $, $ \left(\mathrm{46, 100}\right) $, $ \left(\mathrm{46, 190}\right) $, $ \left(\mathrm{10, 190}\right) $, and energy distribution of electrons at these positions will be shown in Fig. 4. $ \left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right)=(-0.1, -0.1) $ (a), $ (-0.2, -0.1) $ (b), $ (-\mathrm{0.1, 0.1}) $ (c), $ (-\mathrm{0.2, 0.2}) $ (d), which correspond to the left and right filling factors $ ({\nu }_{\mathrm{L}}, {\nu }_{\mathrm{R}})=\left(\mathrm{1, 1}\right) $ (a), $ \left(\mathrm{3, 1}\right) $ (b), $ (1, -1) $ (c), and $ (3, -3) $ (d), respectively.

    图 3  局域热产生$ {Q}_{\mathrm{L}} $随着格点位置坐标$ (x, y) $的变化, 带箭头的黑色实线代表手性边缘态的数目和传播方向. 符号■, ▲, ◆, ●, ★标记的位置分别是$ \left(\mathrm{10, 10}\right) $, $ \left(\mathrm{46, 10}\right) $, $ \left(\mathrm{46, 100}\right) $, $ \left(\mathrm{46, 190}\right) $, $ \left(\mathrm{10, 190}\right) $, 在图4中将给出这些位置上的电子能量分布. (a), (b) $ \left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right)=(-0.2, -0.1) $; $ \left(\mathrm{c}\right), \left(\mathrm{d}\right) $ $ \left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right)= (-\mathrm{0.1, 0.1}) $. (a), (c) 无序强度$ W=1 $; (b), (d) 无序强度$ W= $2. 无序构型平均取$ 400 $

    Figure 3.  Local heat generation $ {Q}_{\mathrm{L}} $ vs. lattice position $ (x, y) $, the black solid lines with arrows represent the number and propagation direction of the chiral edge states. Positions marked by symbols ■, ▲, ◆, ●, ★ are $ \left(\mathrm{10, 10}\right) $, $ \left(\mathrm{46, 10}\right) $, $ \left(\mathrm{46, 100}\right) $, $ \left(\mathrm{46, 190}\right) $, $ \left(\mathrm{10, 190}\right) $, respectively, and energy distribution of electrons at these positions will be shown in Fig. 4. (a), (b) $\left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right)= $$ (-0.2, -0.1)$; (c), (d) $ \left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right)=(-\mathrm{0.1, 0.1}) $. (a), (c) Disorder strength $ W=1 $; (b) (d)$ W= $2. Here the local heat generation is averaged up to 400 configurations.

    图 4  不同位置处的分布函数F随着能量E的变化, 符号■, ▲, ◆, ●, ★对应图2图3中标记的位置. (a), (b) $\left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right)= $$ (-0.2, -0.1)$; (c), (d) $ (-\mathrm{0.1, 0.1}) $. (a), (c) 无序强度$ W=0 $; (b), (d) $ W=1 $. 当$ \mathrm{W}\ne 0 $时, 无序构型平均取$ 400 $

    Figure 4.  Distribution function F vs. energy E for different positions, the symbols ■, ▲, ◆, ●, ★ correspond to positions marked in Fig. 2 and Fig. 3. (a), (b) $ \left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right)=(-0.2, -0.1) $; (c), (d) $ \left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right)=(-\mathrm{0.1, 0.1}) $. (a), (c) Disorder strength $ W=0 $; (b), (d) $ W= $1. Here distribution function F is averaged up to 400 configurations when $ W\ne 0 $.

    Baidu
  • [1]

    von Klitzing K, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [3]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [4]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [5]

    Halperin 1982 Phys. Rev. B 25 2185Google Scholar

    [6]

    von Klitzing K 2019 Phys. Rev. Lett. 122 200001Google Scholar

    [7]

    Tang F, Ren Y, Wang P, Zhong R, Schneeloch J, Yang S A, Yang K, Lee P A, Gu G, Qiao Z, Zhang L 2019 Nature 569 537Google Scholar

    [8]

    Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge: Cambridge University Press) p293

    [9]

    Büttiker M 1988 Phys. Rev. B 38 9375Google Scholar

    [10]

    Laughlin 1981 Phys. Rev. B 23 5632Google Scholar

    [11]

    Laughlin 1983 Phys. Rev. Lett. 50 1395Google Scholar

    [12]

    Halbertal D, Cuppens J, Shalom M B, Embon L, Shadmi N, Anahory Y, Naren H R, Sarkar J, Uri A, Ronen Y, Myasoedov Y, Levitov L S, Joselevich E, Geim A K, Zeldov E 2016 Nature 539 407Google Scholar

    [13]

    Halbertal D, Shalom M B, Uri A, Bagani K, Meltzer A Y, Marcus I, Myasoedov Y, Birkbeck J, Levitov L S, Geim A K, Zeldov E 2017 Science 358 1303Google Scholar

    [14]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [15]

    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337Google Scholar

    [16]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [17]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [18]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [19]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379Google Scholar

    [20]

    Semenoff G W 1984 Phys. Rev. Lett. 53 2449Google Scholar

    [21]

    Gusynin V P, Sharapov S G 2005 Phys. Rev. Lett. 95 146801Google Scholar

    [22]

    Marguerite A, Birkbeck J, Aharon-Steinberg A, Halbertal D, Bagani K, Marcus I, Myasoedov Y, Geim K, Perello D J, Zeldov E 2019 Nature 575 628Google Scholar

    [23]

    Zhang G, Gornyi I V, Mirlin A D 2020 Phys. Rev. Res. 2 013337Google Scholar

    [24]

    Fang J Y, Yang N X, Yan Q, Guo A M, Sun Q F 2021 Phys. Rev. B 104 115411Google Scholar

    [25]

    Aharon-Steinberg A, Marguerite A, Perello D J, Bagani K, Holder T, Myasoedov Y, Levitov L S, Geim A K, Zeldov E 2021 Nature 593 528Google Scholar

    [26]

    Anahory Y, Naren H R, Lachman E O, Buhbut Sinai S, Uri A, Embon L, Yaakobi E, Myasoedov Y, Huber M E, Klajn R, Zeldov E 2020 Nanoscale 12 3174Google Scholar

    [27]

    Huard B, Sulpizio J A, Stander N, Todd K, Yang B, Goldhaber-Gordon D 2007 Phys. Rev. Lett. 98 236803Google Scholar

    [28]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, Morpurgo A F 2007 Nature 446 56Google Scholar

    [29]

    Williams J R, DiCarlo L, Marcus C M 2007 Science 317 638Google Scholar

    [30]

    Özyilmaz B, Jarillo-Herrero P, Efetov D, Abanin D A, Levitov L S, Kim P 2007 Phys. Rev. Lett. 99 166804Google Scholar

    [31]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620Google Scholar

    [32]

    Stander N, Huard B, Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807Google Scholar

    [33]

    Cheianov V V, Fal’ko V, Altshuler B L 2007 Science 315 1252Google Scholar

    [34]

    Rycerz A, Tworzydlo Beenakker C W J 2007 Nat. Phys. 3 172Google Scholar

    [35]

    Abanin D A, Levitov L S 2007 Science 317 641Google Scholar

    [36]

    Lohmann T, von Klitzing K, Smet J H 2009 Nano Lett. 9 1973Google Scholar

    [37]

    Wang K, Harzheim A, Taniguchi T, Watanabei K, Lee J U, Kim P 2019 Phys. Rev. Lett. 122 146801Google Scholar

    [38]

    Meir Y, Wingreen N S 1992 Phys. Rev. Lett. 68 2512Google Scholar

    [39]

    Jauho A P, Wingreen N S, Meir Y 1994 Phys. Rev. B 50 5528Google Scholar

    [40]

    Büttiker M 1986 Phys. Rev. Lett. 57 1761Google Scholar

    [41]

    Sheng D N, Sheng L, Weng Z Y 2006 Phys. Rev. B 73 233406Google Scholar

    [42]

    Sun Q F, Xie X C 2010 Phys. Rev. Lett. 104 066805Google Scholar

    [43]

    Long W, Sun Q F, Wang J 2008 Phys. Rev. Lett. 101 166806Google Scholar

    [44]

    Li J, Shen S Q 2008 Phys. Rev. B 78 205308Google Scholar

    [45]

    Sancho M P L, Sancho J M L, Rubio J 1985 J. Phys. F: Met. Phys. 15 851Google Scholar

    [46]

    Tian J, Jiang Y, Childres I, Cao H, Hu J, Chen Y P 2013 Phys. Rev. B 88 125410Google Scholar

    [47]

    Chen J C, Au Yeung T C, Sun Q F 2010 Phys. Rev. B 81 245417Google Scholar

  • [1] Kun Yang. Geometric degrees of freedom and graviton-like excitations in fractional quantum Hall liquids. Acta Physica Sinica, 2024, 73(17): 177801. doi: 10.7498/aps.73.20240994
    [2] Gao Jian-Hua, Sheng Xin-Li, Wang Qun, Zhuang Peng-Fei. Relativistic spin transport theory for spin-1/2 fermions. Acta Physica Sinica, 2023, 72(11): 112501. doi: 10.7498/aps.72.20222470
    [3] Ding Jin-Ting, Hu Pei-Jia, Guo Ai-Min. Electron transport in graphene nanoribbons with line defects. Acta Physica Sinica, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [4] Liu Tian, Li Zong-Liang, Zhang Yan-Hui, Lan Kang. Study of quantum speed limit of of transport process of single quantum dot system in dissipative environment. Acta Physica Sinica, 2023, 72(4): 047301. doi: 10.7498/aps.72.20222159
    [5] Sui Wen-Jie, Zhang Yu, Zhang Zi-Rui, Wang Xiao-Long, Zhang Hong-Fang, Shi Qiang, Yang Bing. Unidirectional propagation control of helical edge states in topological spin photonic crystals. Acta Physica Sinica, 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [6] Hu Hai-Tao, Guo Ai-Min. Quantum transport properties of bilayer borophene nanoribbons. Acta Physica Sinica, 2022, 71(22): 227301. doi: 10.7498/aps.71.20221304
    [7] Wu Xin-Yu, Han Wei-Hua, Yang Fu-Hua. Quantum transport relating to impurity quantum dots in silicon nanostructure transistor. Acta Physica Sinica, 2019, 68(8): 087301. doi: 10.7498/aps.68.20190095
    [8] Yan Jie, Wei Miao-Miao, Xing Yan-Xia. Dephasing effect of quantum spin topological states in HgTe/CdTe quantum well. Acta Physica Sinica, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [9] Lü Xin-Yu, Li Zhi-Qiang. Topological properties of graphene moiré superlattice systems and recent optical studies. Acta Physica Sinica, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [10] Wang Zi, Zhang Dan-Mei, Ren Jie. Topological and non-reciprocal phenomena in elastic waves and heat transport of phononic systems. Acta Physica Sinica, 2019, 68(22): 220302. doi: 10.7498/aps.68.20191463
    [11] Yan Rui, Wu Ze-Wen, Xie Wen-Ze, Li Dan, Wang Yin. First-principles study on transport property of molecular} device with non-collinear electrodes. Acta Physica Sinica, 2018, 67(9): 097301. doi: 10.7498/aps.67.20172221
    [12] Kong Ling-Yao. Research progress on topological properties and micro-magnetic simulation study in dynamics of magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [13] Chen Ze-Guo, Wu Ying. Multiple topological phases in phononic crystals. Acta Physica Sinica, 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [14] Sun Xiao-Chen, He Cheng, Lu Ming-Hui, Chen Yan-Feng. Topological properties of artificial bandgap materials. Acta Physica Sinica, 2017, 66(22): 224203. doi: 10.7498/aps.66.224203
    [15] Jia Zi-Yuan, Yang Yu-Ting, Ji Li-Yu, Hang Zhi-Hong. Deterministic interface states in photonic crystal with graphene-allotrope-like complex unit cells. Acta Physica Sinica, 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [16] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [17] Zhang Cai-Xia, Guo Hong, Yang Zhi, Luo You-Hua. The magnetic and quantum transport properties of sandwich-structured Tan(B3N3H6)n+1 clusters. Acta Physica Sinica, 2012, 61(19): 193601. doi: 10.7498/aps.61.193601
    [18] Fu Bang, Deng Wen-Ji. General solutions to spin transportation of electrons through equilateral polygon quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, 2010, 59(4): 2739-2745. doi: 10.7498/aps.59.2739
    [19] Li Peng, Deng Wen-Ji. Exact solutions to the transportation of electrons through equilateral polygonal quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
    [20] Yin Yong-Qi, Li Hua, Ma Jia-Ning, He Ze-Long, Wang Xuan-Zhang. Quantum transport of multi-terminal coupled-quantum-dot-molecular bridge. Acta Physica Sinica, 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
Metrics
  • Abstract views:  4575
  • PDF Downloads:  206
  • Cited By: 0
Publishing process
  • Received Date:  05 January 2022
  • Accepted Date:  30 January 2022
  • Available Online:  28 February 2022
  • Published Online:  20 June 2022

/

返回文章
返回
Baidu
map