搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导线非共线的分子器件输运性质的第一性原理研究

闫瑞 吴泽文 谢稳泽 李丹 王音

引用本文:
Citation:

导线非共线的分子器件输运性质的第一性原理研究

闫瑞, 吴泽文, 谢稳泽, 李丹, 王音

First-principles study on transport property of molecular} device with non-collinear electrodes

Yan Rui, Wu Ze-Wen, Xie Wen-Ze, Li Dan, Wang Yin
PDF
导出引用
  • 分子器件是电子器件向小体积化发展的极限,分子器件中的电子在输运过程中体现出明显的量子效应,分子导线与分子接触的位置和导线间的角度等器件结构因素都会对分子器件的输运性质产生较大的影响.迄今为止,尚未见利用第一性原理量子输运计算方法研究导线非共线的分子器件输运性质的报道.本文以金-苯(硫醇)-金结构的分子器件为例,利用基于非平衡格林函数理论和密度泛函理论的第一性原理量子输运计算方法对其输运性质进行了系统研究,特别注重于研究随着非共线导线间导线夹角角度的变化及导线和苯(硫醇)分子接触位置的不同对器件输运性质的影响.计算表明,金导线与苯(硫醇)的接触位置及导线的夹角等器件结构细节不仅能够定量地影响金-苯(硫醇)-金分子器件的电流大小,还能够定性地改变器件的输运性质,使得部分器件结构出现负微分电阻效应.研究结果对全面理解分子器件的输运性质具有一定的指导意义.
    Molecular device is the ultimate electronic devices in the view point sense of scale size.Electron transport in molecular device shows obvious quantum effect,and the transport property of molecular device will be strongly affected by the chemical and structural details,including the contact position and method between the molecule and electrodes,the angle between two electrodes connecting to the molecule.However,we notice that in the existing reports on device simulations from first principles the two electrodes are always in a collinear case.Even for multi-electrode simulations,one usually used to adopt orthogonal electrodes,namely,each pair of the electrodes is in a collinear case.As the electrode configuration will clearly affect the transport property of a device on a nanometer scale,the first principles quantum transport studies with non-collinear electrodes are of great importance,but have not been reported yet.In this paper,we demonstrate the calculations of a transport system with non-collinear electrodes based on the state-of-the-art theoretical approach where the density functional theory (DFT) is combined with the Keldysh non-equilibrium Green's function (NEGF) formalism. Technically,to model a quantum transport system with non-collinear electrodes,the center scattering region of the transport system is placed into an orthogonal simulation box in all the other quantum transport simulations,while one or two electrodes are simulated within a non-orthogonal box.This small change in the shape of the simulation box of the electrode provides flexibility to calculate transport system with non-collinear electrodes,but also increases the complexity of the background coding.To date,the simulation of transport system with non-collinear electrodes has been realized only in the Nanodcal software package. Here,we take the Au-benzene (mercaptan)-Au molecular devices for example,and systematically calculate the quantum transport properties of the molecular devices with various contact positions and methods,and specifically,we first demonstrate the effect of the angle between the two electrodes on the transport property of molecular device from first principles.In our NEGF-DFT calculations performed by Nanodcal software package,the double- polarized atomic orbital basis is used to expand the physical quantities,and the exchange-correlation is treated in the local density approximation,and atomic core is determined by the standard norm conserving nonlocal pseudo-potential.Simulation results show that the chemical and structural details not only quantitatively affect the current value of the molecular device,but also bring new transport features to a device,such as negative differential resistance.From these results,we can conclude that the physics of a transport system having been investigated in more detail and a larger parameter space such as the effect of the contact model having been assessed by a comparison with ideal contacts,further understanding of the transport system can be made and more interesting physical property of the device can be obtained,which will be useful in designing of emerging electronics.
      通信作者: 李丹, danli@bjtu.edu.cn;yinwang@shu.edu.cn ; 王音, danli@bjtu.edu.cn;yinwang@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11774217,61574014,61106056)和鸿之微研究生学术研究资助计划(hzwtech-PROP)资助的课题.
      Corresponding author: Li Dan, danli@bjtu.edu.cn;yinwang@shu.edu.cn ; Wang Yin, danli@bjtu.edu.cn;yinwang@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774217, 61574014, 61106056) and the Postgraduate Research Opportunities Program of Hongzhiwei Technology (Shanghai) Co., Ltd. (hzwtech-PROP).
    [1]

    Mark R 2013 Nat. Nanotechnol. 8 378

    [2]

    Sun L, Diaz-Fernandez Y A, Gschneidtner T A, Westerlund F, Lara-Avila S, Moth-Poulsen K 2014 Chem. Soc. Rev. 43 7378

    [3]

    Yu Y J, Li Y Y, Wan L H, Wang B, Wei Y D 2013 Mod. Phys. Lett. B 27 1350121

    [4]

    Wang H, Zhou J, Liu X, Yao C, Li H, Niu L, Wang Y, Yin H 2017 Appl. Phys. Lett. 111 172408

    [5]

    Kumar M 2017 Superlattices Microstruct. 101 101

    [6]

    Chen C J, Smeu M, Ratner M A 2014 J. Chem. Phys. 140 054709

    [7]

    Jia C C, Agostino M, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Mark A R, Xu H Q, Abraham N, Guo X F 2016 Science 352 1443

    [8]

    Min W J, Hao H, Wang X L, Zheng X H, Zeng Z 2016 Rsc. Adv. 6 6191

    [9]

    Tao L L, Wang J 2016 Appl. Phys. Lett. 108 062903

    [10]

    Heath J R 2009 Annu. Rev. Mater. Res. 39 1

    [11]

    McCreery R L, Bergren A J 2009 Adv. Mater. 21 4303

    [12]

    Zhao J, Zeng H 2016 RSC Adv. 6 28298

    [13]

    Yu Z Z, Wang J 2015 Phys. Rev. B 91 205431

    [14]

    Chen M Y, Yu Z, Wang Y, Xie Y Q, Wang J, Guo H 2015 Phys. Chem. Chem. Phys. 18 1601

    [15]

    Yu Z, Sun L Z, Zhang C X, Zhong J X 2010 Appl. Phys. Lett. 96 173101

    [16]

    Chen M, Yu Z, Xie Y, Wang Y 2017 Appl. Phys. Lett. 109 142409

    [17]

    Solomon G C, Herrmann C, Hansen T, Mujica V, Ratner M A 2010 Nat. Chem. 2 223

    [18]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509

    [19]

    Ying H, Zhou W X, Chen K Q, Zhou G 2014 Comput. Mater. Sci. 82 33

    [20]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [21]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104

    [22]

    Maassen J, Harb M, Michaud-Rioux V, Zhu Y, Guo H 2013 Proc. IEEE 101 518

    [23]

    Yang Z, Ji Y L, Lan G Q, Xu L C, Liu X G, Xu B S 2015 Solid State Commun. 217 38

    [24]

    Xu B, Tao N J 2003 Science 301 1221

    [25]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2013 Appl. Phys. Lett. 102 023508

    [26]

    Ling Y C, Ning F, Zhou Y H, Chen K Q 2015 Org. Electr. 19 92

    [27]

    Peng J, Zhou Y H, Chen K Q 2015 Org. Electr. 27 137

    [28]

    Li Y H, Yan Q, Zhou L P, Han Q 2015 Acta Phys. Sin. 64 057301 (in Chinese) [李永辉, 闫强, 周丽萍, 韩琴 2015 64 057301]

  • [1]

    Mark R 2013 Nat. Nanotechnol. 8 378

    [2]

    Sun L, Diaz-Fernandez Y A, Gschneidtner T A, Westerlund F, Lara-Avila S, Moth-Poulsen K 2014 Chem. Soc. Rev. 43 7378

    [3]

    Yu Y J, Li Y Y, Wan L H, Wang B, Wei Y D 2013 Mod. Phys. Lett. B 27 1350121

    [4]

    Wang H, Zhou J, Liu X, Yao C, Li H, Niu L, Wang Y, Yin H 2017 Appl. Phys. Lett. 111 172408

    [5]

    Kumar M 2017 Superlattices Microstruct. 101 101

    [6]

    Chen C J, Smeu M, Ratner M A 2014 J. Chem. Phys. 140 054709

    [7]

    Jia C C, Agostino M, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Mark A R, Xu H Q, Abraham N, Guo X F 2016 Science 352 1443

    [8]

    Min W J, Hao H, Wang X L, Zheng X H, Zeng Z 2016 Rsc. Adv. 6 6191

    [9]

    Tao L L, Wang J 2016 Appl. Phys. Lett. 108 062903

    [10]

    Heath J R 2009 Annu. Rev. Mater. Res. 39 1

    [11]

    McCreery R L, Bergren A J 2009 Adv. Mater. 21 4303

    [12]

    Zhao J, Zeng H 2016 RSC Adv. 6 28298

    [13]

    Yu Z Z, Wang J 2015 Phys. Rev. B 91 205431

    [14]

    Chen M Y, Yu Z, Wang Y, Xie Y Q, Wang J, Guo H 2015 Phys. Chem. Chem. Phys. 18 1601

    [15]

    Yu Z, Sun L Z, Zhang C X, Zhong J X 2010 Appl. Phys. Lett. 96 173101

    [16]

    Chen M, Yu Z, Xie Y, Wang Y 2017 Appl. Phys. Lett. 109 142409

    [17]

    Solomon G C, Herrmann C, Hansen T, Mujica V, Ratner M A 2010 Nat. Chem. 2 223

    [18]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509

    [19]

    Ying H, Zhou W X, Chen K Q, Zhou G 2014 Comput. Mater. Sci. 82 33

    [20]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [21]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104

    [22]

    Maassen J, Harb M, Michaud-Rioux V, Zhu Y, Guo H 2013 Proc. IEEE 101 518

    [23]

    Yang Z, Ji Y L, Lan G Q, Xu L C, Liu X G, Xu B S 2015 Solid State Commun. 217 38

    [24]

    Xu B, Tao N J 2003 Science 301 1221

    [25]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2013 Appl. Phys. Lett. 102 023508

    [26]

    Ling Y C, Ning F, Zhou Y H, Chen K Q 2015 Org. Electr. 19 92

    [27]

    Peng J, Zhou Y H, Chen K Q 2015 Org. Electr. 27 137

    [28]

    Li Y H, Yan Q, Zhou L P, Han Q 2015 Acta Phys. Sin. 64 057301 (in Chinese) [李永辉, 闫强, 周丽萍, 韩琴 2015 64 057301]

  • [1] 严岩, 孙峰, 羊志, 孔程昱, 葛云龙, 陈登辉, 邱帅, 李宗良. 金电极对偶氮苯分子结的结构及其电输运性质的力学调控作用.  , 2024, 73(8): 088502. doi: 10.7498/aps.73.20231999
    [2] 彭淑平, 邓淑玲, 刘乾, 董丞骐, 范志强. N, B原子取代调控M-OPE分子器件的量子干涉与自旋输运.  , 2024, 73(10): 108501. doi: 10.7498/aps.73.20240174
    [3] 刘琳, 孙峰, 李雨晨, 严岩, 刘冰心, 羊志, 邱帅, 李宗良. 金电极与吡啶末端连接界面结构的力学变化过程理论研究.  , 2023, 72(4): 048504. doi: 10.7498/aps.72.20222081
    [4] 高建华, 盛欣力, 王群, 庄鹏飞. 费米子的相对论自旋输运理论.  , 2023, 72(11): 112501. doi: 10.7498/aps.72.20222470
    [5] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究.  , 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [6] 彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强. 二噻吩硼烷异构体分子结构测定的第一性原理研究.  , 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [7] 刘天, 李宗良, 张延惠, 蓝康. 耗散环境单量子点体系输运过程的量子速度极限研究.  , 2023, 72(4): 047301. doi: 10.7498/aps.72.20222159
    [8] 方静云, 孙庆丰. 石墨烯p-n结在磁场中的电输运热耗散.  , 2022, 71(12): 127203. doi: 10.7498/aps.71.20220029
    [9] 胡海涛, 郭爱敏. 双层硼烯纳米带的量子输运研究.  , 2022, 71(22): 227301. doi: 10.7498/aps.71.20221304
    [10] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应.  , 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [11] 吴歆宇, 韩伟华, 杨富华. 硅纳米结构晶体管中与杂质量子点相关的量子输运.  , 2019, 68(8): 087301. doi: 10.7498/aps.68.20190095
    [12] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运.  , 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [13] 陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍. B/N掺杂类直三角石墨烯纳米带器件引起的整流效应.  , 2015, 64(19): 196101. doi: 10.7498/aps.64.196101
    [14] 张彩霞, 郭虹, 杨致, 骆游桦. 三明治结构Tan(B3N3H6)n+1 团簇的磁性和量子输运性质.  , 2012, 61(19): 193601. doi: 10.7498/aps.61.193601
    [15] 付邦, 邓文基. 任意正多边形量子环自旋输运的普遍解.  , 2010, 59(4): 2739-2745. doi: 10.7498/aps.59.2739
    [16] 安义鹏, 杨传路, 王美山, 马晓光, 王德华. C20F20分子电子输运性质的第一性原理研究.  , 2010, 59(3): 2010-2015. doi: 10.7498/aps.59.2010
    [17] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解.  , 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
    [18] 李巧华, 张振华, 刘新海, 邱明, 丁开和. 分子电子器件简化模型的电子透射谱的计算.  , 2009, 58(10): 7204-7210. doi: 10.7498/aps.58.7204
    [19] 尹永琦, 李华, 马佳宁, 贺泽龙, 王选章. 多端耦合量子点分子桥的量子输运特性研究.  , 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
    [20] 王利光, 陈 蕾, 郁鼎文, 李 勇, Terence K. S. W.. 单分子器件与电极间耦合界面对电子传输的影响.  , 2007, 56(11): 6526-6530. doi: 10.7498/aps.56.6526
计量
  • 文章访问数:  6711
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-12
  • 修回日期:  2017-12-28
  • 刊出日期:  2018-05-05

/

返回文章
返回
Baidu
map