-
分子器件是电子器件向小体积化发展的极限,分子器件中的电子在输运过程中体现出明显的量子效应,分子导线与分子接触的位置和导线间的角度等器件结构因素都会对分子器件的输运性质产生较大的影响.迄今为止,尚未见利用第一性原理量子输运计算方法研究导线非共线的分子器件输运性质的报道.本文以金-苯(硫醇)-金结构的分子器件为例,利用基于非平衡格林函数理论和密度泛函理论的第一性原理量子输运计算方法对其输运性质进行了系统研究,特别注重于研究随着非共线导线间导线夹角角度的变化及导线和苯(硫醇)分子接触位置的不同对器件输运性质的影响.计算表明,金导线与苯(硫醇)的接触位置及导线的夹角等器件结构细节不仅能够定量地影响金-苯(硫醇)-金分子器件的电流大小,还能够定性地改变器件的输运性质,使得部分器件结构出现负微分电阻效应.研究结果对全面理解分子器件的输运性质具有一定的指导意义.Molecular device is the ultimate electronic devices in the view point sense of scale size.Electron transport in molecular device shows obvious quantum effect,and the transport property of molecular device will be strongly affected by the chemical and structural details,including the contact position and method between the molecule and electrodes,the angle between two electrodes connecting to the molecule.However,we notice that in the existing reports on device simulations from first principles the two electrodes are always in a collinear case.Even for multi-electrode simulations,one usually used to adopt orthogonal electrodes,namely,each pair of the electrodes is in a collinear case.As the electrode configuration will clearly affect the transport property of a device on a nanometer scale,the first principles quantum transport studies with non-collinear electrodes are of great importance,but have not been reported yet.In this paper,we demonstrate the calculations of a transport system with non-collinear electrodes based on the state-of-the-art theoretical approach where the density functional theory (DFT) is combined with the Keldysh non-equilibrium Green's function (NEGF) formalism. Technically,to model a quantum transport system with non-collinear electrodes,the center scattering region of the transport system is placed into an orthogonal simulation box in all the other quantum transport simulations,while one or two electrodes are simulated within a non-orthogonal box.This small change in the shape of the simulation box of the electrode provides flexibility to calculate transport system with non-collinear electrodes,but also increases the complexity of the background coding.To date,the simulation of transport system with non-collinear electrodes has been realized only in the Nanodcal software package. Here,we take the Au-benzene (mercaptan)-Au molecular devices for example,and systematically calculate the quantum transport properties of the molecular devices with various contact positions and methods,and specifically,we first demonstrate the effect of the angle between the two electrodes on the transport property of molecular device from first principles.In our NEGF-DFT calculations performed by Nanodcal software package,the double- polarized atomic orbital basis is used to expand the physical quantities,and the exchange-correlation is treated in the local density approximation,and atomic core is determined by the standard norm conserving nonlocal pseudo-potential.Simulation results show that the chemical and structural details not only quantitatively affect the current value of the molecular device,but also bring new transport features to a device,such as negative differential resistance.From these results,we can conclude that the physics of a transport system having been investigated in more detail and a larger parameter space such as the effect of the contact model having been assessed by a comparison with ideal contacts,further understanding of the transport system can be made and more interesting physical property of the device can be obtained,which will be useful in designing of emerging electronics.
-
Keywords:
- molecular device /
- quantum transport /
- electrode
[1] Mark R 2013 Nat. Nanotechnol. 8 378
[2] Sun L, Diaz-Fernandez Y A, Gschneidtner T A, Westerlund F, Lara-Avila S, Moth-Poulsen K 2014 Chem. Soc. Rev. 43 7378
[3] Yu Y J, Li Y Y, Wan L H, Wang B, Wei Y D 2013 Mod. Phys. Lett. B 27 1350121
[4] Wang H, Zhou J, Liu X, Yao C, Li H, Niu L, Wang Y, Yin H 2017 Appl. Phys. Lett. 111 172408
[5] Kumar M 2017 Superlattices Microstruct. 101 101
[6] Chen C J, Smeu M, Ratner M A 2014 J. Chem. Phys. 140 054709
[7] Jia C C, Agostino M, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Mark A R, Xu H Q, Abraham N, Guo X F 2016 Science 352 1443
[8] Min W J, Hao H, Wang X L, Zheng X H, Zeng Z 2016 Rsc. Adv. 6 6191
[9] Tao L L, Wang J 2016 Appl. Phys. Lett. 108 062903
[10] Heath J R 2009 Annu. Rev. Mater. Res. 39 1
[11] McCreery R L, Bergren A J 2009 Adv. Mater. 21 4303
[12] Zhao J, Zeng H 2016 RSC Adv. 6 28298
[13] Yu Z Z, Wang J 2015 Phys. Rev. B 91 205431
[14] Chen M Y, Yu Z, Wang Y, Xie Y Q, Wang J, Guo H 2015 Phys. Chem. Chem. Phys. 18 1601
[15] Yu Z, Sun L Z, Zhang C X, Zhong J X 2010 Appl. Phys. Lett. 96 173101
[16] Chen M, Yu Z, Xie Y, Wang Y 2017 Appl. Phys. Lett. 109 142409
[17] Solomon G C, Herrmann C, Hansen T, Mujica V, Ratner M A 2010 Nat. Chem. 2 223
[18] Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509
[19] Ying H, Zhou W X, Chen K Q, Zhou G 2014 Comput. Mater. Sci. 82 33
[20] Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407
[21] Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104
[22] Maassen J, Harb M, Michaud-Rioux V, Zhu Y, Guo H 2013 Proc. IEEE 101 518
[23] Yang Z, Ji Y L, Lan G Q, Xu L C, Liu X G, Xu B S 2015 Solid State Commun. 217 38
[24] Xu B, Tao N J 2003 Science 301 1221
[25] Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2013 Appl. Phys. Lett. 102 023508
[26] Ling Y C, Ning F, Zhou Y H, Chen K Q 2015 Org. Electr. 19 92
[27] Peng J, Zhou Y H, Chen K Q 2015 Org. Electr. 27 137
[28] Li Y H, Yan Q, Zhou L P, Han Q 2015 Acta Phys. Sin. 64 057301 (in Chinese) [李永辉, 闫强, 周丽萍, 韩琴 2015 64 057301]
-
[1] Mark R 2013 Nat. Nanotechnol. 8 378
[2] Sun L, Diaz-Fernandez Y A, Gschneidtner T A, Westerlund F, Lara-Avila S, Moth-Poulsen K 2014 Chem. Soc. Rev. 43 7378
[3] Yu Y J, Li Y Y, Wan L H, Wang B, Wei Y D 2013 Mod. Phys. Lett. B 27 1350121
[4] Wang H, Zhou J, Liu X, Yao C, Li H, Niu L, Wang Y, Yin H 2017 Appl. Phys. Lett. 111 172408
[5] Kumar M 2017 Superlattices Microstruct. 101 101
[6] Chen C J, Smeu M, Ratner M A 2014 J. Chem. Phys. 140 054709
[7] Jia C C, Agostino M, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Mark A R, Xu H Q, Abraham N, Guo X F 2016 Science 352 1443
[8] Min W J, Hao H, Wang X L, Zheng X H, Zeng Z 2016 Rsc. Adv. 6 6191
[9] Tao L L, Wang J 2016 Appl. Phys. Lett. 108 062903
[10] Heath J R 2009 Annu. Rev. Mater. Res. 39 1
[11] McCreery R L, Bergren A J 2009 Adv. Mater. 21 4303
[12] Zhao J, Zeng H 2016 RSC Adv. 6 28298
[13] Yu Z Z, Wang J 2015 Phys. Rev. B 91 205431
[14] Chen M Y, Yu Z, Wang Y, Xie Y Q, Wang J, Guo H 2015 Phys. Chem. Chem. Phys. 18 1601
[15] Yu Z, Sun L Z, Zhang C X, Zhong J X 2010 Appl. Phys. Lett. 96 173101
[16] Chen M, Yu Z, Xie Y, Wang Y 2017 Appl. Phys. Lett. 109 142409
[17] Solomon G C, Herrmann C, Hansen T, Mujica V, Ratner M A 2010 Nat. Chem. 2 223
[18] Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509
[19] Ying H, Zhou W X, Chen K Q, Zhou G 2014 Comput. Mater. Sci. 82 33
[20] Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407
[21] Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104
[22] Maassen J, Harb M, Michaud-Rioux V, Zhu Y, Guo H 2013 Proc. IEEE 101 518
[23] Yang Z, Ji Y L, Lan G Q, Xu L C, Liu X G, Xu B S 2015 Solid State Commun. 217 38
[24] Xu B, Tao N J 2003 Science 301 1221
[25] Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2013 Appl. Phys. Lett. 102 023508
[26] Ling Y C, Ning F, Zhou Y H, Chen K Q 2015 Org. Electr. 19 92
[27] Peng J, Zhou Y H, Chen K Q 2015 Org. Electr. 27 137
[28] Li Y H, Yan Q, Zhou L P, Han Q 2015 Acta Phys. Sin. 64 057301 (in Chinese) [李永辉, 闫强, 周丽萍, 韩琴 2015 64 057301]
计量
- 文章访问数: 6711
- PDF下载量: 272
- 被引次数: 0