-
Superconductivity is a macroscopic quantum phenomenon. Flux quantization and the Josephson effect are two physical phenomena which can best reflect the macroscopic quantum properties. Superconducting quantum interference device (SQUID) is one type of superconducting devices which uses these two characteristics. SQUID devices are widely used in the sensitive detection of magnetic signals. This paper briefly introduces the background and recent developments of low temperature superconductor and high temperature superconductor SQUID devices.
[1] London F 1950 Superfluids (New York: Wiley)
[2] Deaver B S, Fairbank W M 1961 Phys. Rev. Lett. 7 43
Google Scholar
[3] Doll R, Näbauer M 1961 Phys. Rev. Lett. 7 51
Google Scholar
[4] Gough C E, Colclough M S, Forgan E M, Jordan R G, Keene M, Muirhead C M, Rae A I M, Thomas N, Abell J S, Sutton S 1987 Nature 326 855
Google Scholar
[5] Josephson B D 1962 Phys. Lett. 1 251
Google Scholar
[6] Anderson P W, Rowell J M 1963 Phys. Rev. Lett. 10 230
Google Scholar
[7] Clarke J, Braginski A I 2004 The SQUID Handbook (Vol. 1) (New Jersey: John Wiley & Sons)
[8] Clarke J, Braginski A I 2004 The SQUID Handbook (Vol. 2) (New Jersey: John Wiley & Sons)
[9] Fagaly R 2006 Rev. Sci. Instrum 77 101101
Google Scholar
[10] Anders S, Blamire M G, Buchholz F Im, Crété D G, Cristianoe R, Febvref P, Fritzsch L, Herr A, Ilichev E, Kohlmann J, Kunert J, Meyer H G, Niemeyer J, Ortlepp T, Rogalla H, Schurig T, Siegel M, Stolz R,Tarte E, Brake H J M ter, Toepfer H, Villegier J C, Zagoskin A M, Zorin A B 2010 Physica C 470 2079
Google Scholar
[11] Körber R, Storm J H, Seton H 2016 Supercond. Sci. Technol. 29 113001
Google Scholar
[12] Clarke J, Lee Y H, Schneiderman J 2018 Supercond. Sci. Technol. 31 080201
Google Scholar
[13] Pulizzi F 2011 Nature Materials 10 262
Google Scholar
[14] Zhang Y, Dong H, Krause H J, Zhang G F, Xie X M 2020 SQUID Readout Electronics and Magnetometric Systems for Practical Applications (New York: Wiley)
[15] Jaklevic R C, Lambe J, Silver A H, Mercereau J E 1964 Phys. Rev. Lett. 12 159
[16] Caputo P, Oppenläder J, Hässler Ch, Tomes J, Friesch A, Träble T, Schopohl N 2004 Appl. Phys. Lett. 85 1389
Google Scholar
[17] Drung D 2003 Supercond. Sci. Technol. 16 1320
Google Scholar
[18] Dantsker E, Tanaka S, Clarke J 1997 Appl. Phys. Lett. 70 2037
Google Scholar
[19] Tesche C D, Clarke J 1977 J. Low Temp. Phys. 27 301
[20] Faley M I, Pratt K, Reineman R, Schurig D, Gott S, Atwood C G, Sarwinski R E, Paulson D N, Starr T N, Fagaly R L 2017 Supercond. Sci. Technol. 30 083001
Google Scholar
[21] Gurvitch M, Washington M, Higgins H 1983 Appl. Phys. Lett. 42 472
Google Scholar
[22] Koelle D, Kleiner R, Ludwig F, Dantsker E, Clarke J 1999 Rev. Mod. Phys. 71 631
Google Scholar
[23] Tafuri F, Kirtley J R 2005 Rep. Prog. Phys. 68 2573
Google Scholar
[24] Dimos D, Chaudhari P, Mannhart J, LeGoues F K 1988 Phys. Rev. Lett. 61 219
Google Scholar
[25] Du J, Lazar J Y, Lam S K H, Mitchell E E, Foley C P 2014 Supercond. Sci. Technol. 27 095005
Google Scholar
[26] Wakana H, Adachi S, Kamitani A, Nakayama K, Ishimaru Y, Tarutani Y, Tanabe K 2005 IEICE Trans. Electron. E88-C 208
Google Scholar
[27] Bergeal N, Lesueur J, Faini G, Aprili M, Contour J 2006 Appl. Phys. Lett. 89 112515
Google Scholar
[28] Trabaldo E, Ruffieux S, Andersson E, Arpaia R, Montemurro D, Schneiderman J F, Kalaboukhov A, Winkler D, Lombardi F, Bauch T 2020 Appl. Phys. Lett. 116 132601
Google Scholar
[29] Cybart S A, Cho E, Wong T, Wehlin B H, Ma M K, Huynh C, Dynes R 2015 Nat. Nanotechnol. 10 598
Google Scholar
[30] Cho E Y, Li H, LeFebvre J C, Zhou Y W, Dynes R, Cybart S A 2018 Appl. Phys. Lett. 113 162602
Google Scholar
[31] Hari R, Salmelin R 2012 NeuroImage 61 386
Google Scholar
[32] Hämäläinen M, Hari R, Ilmoniemi R J, Knuutila J, Lounasmaa O V 1993 Rev. Mod. Phys. 65 413
[33] Mäkelä J P, Forss N, Jääskeläinen J, Kirveskari E, Korvenoja A, Paetau R 2006 Neurosurgery 59 493
Google Scholar
[34] Lee Y H, Kwon H, Yu K K, Kim J M, Lee S K, Kim M Y, Kim K 2017 Supercond. Sci. Technol. 30 084003
Google Scholar
[35] Öisjöen F, Schneiderman J F, Figueras G A, Chukharkin M L, Kalabukhov A, Hedström A, Elam M, Winkler D 2012 Appl. Phys. Lett. 100 132601
Google Scholar
[36] Sander T H, Preusser J, Mhaskar R, Kitching J, Trahms L, Knappe S 2012 Opt. Express 3 981
Google Scholar
[37] Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Muñoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R, Brookes M J 2018 Nature 555 657
Google Scholar
[38] Inaba T, Nakazawa Y, Yoshida K, Kato Y, Hattori A, Kimura T, Hoshi T, Ishizu T, Seo Y, Sato A, Sekiguchi Y, Nogami A, Watanabe S, Horigome H, Kawakami Y, Aonuma K 2017 Supercond. Sci. Technol. 30 114003
Google Scholar
[39] Enpuku K, Tsujita Y, Nakamura K, Sasayama T, Yoshida T 2017 Supercond. Sci. Technol. 30 053002
Google Scholar
[40] Yang S Y, Chieh J J, Yang C C, Liao S H, Chen H H, Horng H E, Yang H C, Hong C Y, Chiu M J, Chen T F, Huang K W, Wu C C 2013 IEEE Trans. Appl. Supercond. 23 1600604
Google Scholar
[41] Clarke J, Hatridge M, Möβle M 2007 Annu. Rev. Biomed. Eng. 9 389
Google Scholar
[42] Dong H, Hwang S M, Wendland M, You L, Clarke J, Inglis B 2017 Magn. Reson. Med. 78 2342
Google Scholar
[43] Buckenmaier K, Pedersen A, SanGiorgio P, Scheffler K, Clarke J, Inglis B 2019 Neuroimage. 186 185
Google Scholar
[44] Busch S E, Hatridge M, Mößle M, Myers W, Wong T, Mück M, Chew K, Kuchinsky K, Simko J, Clarke J 2012 Magn. Reson. Med. 67 1138
Google Scholar
[45] Magnelind P E, Gomez J J, Matlashov A N, Owens T, Sandin J H, Volegov P L, Espy M A 2011 IEEE Trans. Appl. Supercond. 21 456
Google Scholar
[46] Leslie K E, Binks R A, Lam S K H, Sullivan P A, Tilbrook D L, Thorn R G, Foley C P 2008 Leading Edge 27 70
Google Scholar
[47] Hato T, Tsukamoto A, Adachi S, Oshikubo Y, Watanabe H, Ishikawa H, Sugisaki M, Arai E, Tanabe K 2013 Supercond. Sci. Technol. 26 115003
Google Scholar
[48] Chwala A, Stolz R, Schmelz M, Zakosarenko V, Meyer M, Meyer H G 2015 IEICE Trans. Electron. E98.C 167
Google Scholar
[49] Supracon A Ghttp://www.supracon.de/
[50] Song Z, Dai H, Rong L, et al. 2019 IEEE Trans. Appl. Supercond. 29 1600205
[51] Rong L, Bao S, Wu J, et al. 2019 IEEE Trans. Appl. Supercond. 29 1601704
[52] Stolz R, Zakosarenko V, Schulz M, Chwala A, Fritzsch L, Meyer H G, Kötlin E O 2006 Leading Edge 25 178
Google Scholar
[53] Halperin W P 2014 Nat. Phys. 10 467
Google Scholar
[54] Yang C, Si M T, You L X 2020 Sci. China Inf. Sci. 63 180502
Google Scholar
[55] Irwin K D, Cho H M, Doriese W B, Fowler J W, Hilton G C, Niemack M D, Reintsema C D, Schmidt D R, Ullom J N, Vale L R 2012 J. Low Temp. Phys. 167 588
Google Scholar
[56] Sloan J V, Hotz M, Boutan C, et al. 2016 Phys. Dark Universe 14 95
Google Scholar
[57] Asztalos S J, Carosi G, Hagmann C, et al. 2010 Phys. Rev. Lett. 104 041301
Google Scholar
[58] Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969
Google Scholar
[59] Embon L, Anahory Y, Jelić Ž L, Lachman E O, Myasoedov Y, Huber M E, Mikitik G P, Silhanek A V, Milošević M V, Gurevich A, Zeldov E 2017 Nat. Commun. 8 85
Google Scholar
[60] Halbertal D, Cuppens J, M. Ben Shalom Shalom M. B, Embon L, Shadmi N, Anahory Y, Naren H R, Sarkar J, Uri A, Ronen Y, Myasoedov Y, Levitov L S, Joselevich E, Geim A K, Zeldov E 2016 Nature 539 407
Google Scholar
[61] Hatsukade Y, Inaba T, Maruno Y, Tanaka S 2005 IEEE Trans. Appl. Supercond. 15 723
Google Scholar
[62] Krause H J, Michael M M, Tanaka S 2015 SQUlDs in Nondestructive Evaluation. In Applied Superconductivity: Handbook on Devices and Applications (Vol. 2) (Weinheim: Wiley)
[63] Faley M, Kostyurina E, Kalashnikov K, Maslennikov Y, Koshelets V, Dunin-Borkowski R 2017 Sensors 17 2798
Google Scholar
[64] Clarke J, Wilhelm F K 2008 Nature 453 1031
Google Scholar
[65] Krantz J P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318
Google Scholar
[66] Kwon S, Tomonaga A, Gopika L B, Devitt S J, Tsai J S 2020 arXiv:2009.08021 [quant-ph]
[67] Kjaergaard M, Schwartz M E, Braumuller J, Krantz P, Wang J I J, Gustavsson S, Oliver W D 2020 Annu. Rev. Condens. Matter Phys. 11 369
Google Scholar
-
图 3 DC-SQUID (a)等效电路示意图; (b)磁通分别为整数个和半整数个Φ0时的I-V曲线; (c)电压-磁通曲线[7]
Fig. 3. The DC-SQUID: (a) Schematic electric circuit; (b) current-voltage characteristics at integer and half-integer values of applied flux; the operation point is set by the bias current Ib; (c) voltage vs. flux Φa/Φ0 for constant bias current[7].
图 7 MgO衬底上45°台阶上生长的YBCO薄膜的扫描电镜(SEM)图像(左图)和高分辨透射电镜HRTEM图像(中图). 右图: 一个16 mm大小、采用台阶结的高温超导DC-SQUID磁强计在超导屏蔽环境下测量的噪声谱[20]
Fig. 7. SEM image (left) and HRTEM image (middle) of an YBCO film deposited on a double-layer-buffered 45° step on an MgO substrate. A 45° [100]-tilted GB is clearly shown. Right: Noise spectral density of a 16 mm high-Tc DC-SQUID magnetometer with step-edge junctions measured in a superconducting shield[20].
图 10 (a) 在MEG-MRI集成实验系统上测量的以及(b)同样刺激在最先进的MEG系统上得到的视觉诱发反应产生的等效偶极和磁场分布; (c)用另一个MEG-MRI集成实验系统在96 μT磁场下得到的超低磁场MRI切片图和记录的听觉反应脑磁信号对应的偶极子; (d)常规3 T磁场下同一个样本的切片图[11]
Fig. 10. Equivalent dipoles and field patterns of the visually evoked responses using (a) the MEG–MRI system and (b) state-of-the-art MEG with the same stimulus protocol. MRI slices (c) at 96 μT, with the registered equivalent dipole of the auditory response overlaid, and (d) from an uncoregistered 3 T image acquired separately from the same subject[11].
-
[1] London F 1950 Superfluids (New York: Wiley)
[2] Deaver B S, Fairbank W M 1961 Phys. Rev. Lett. 7 43
Google Scholar
[3] Doll R, Näbauer M 1961 Phys. Rev. Lett. 7 51
Google Scholar
[4] Gough C E, Colclough M S, Forgan E M, Jordan R G, Keene M, Muirhead C M, Rae A I M, Thomas N, Abell J S, Sutton S 1987 Nature 326 855
Google Scholar
[5] Josephson B D 1962 Phys. Lett. 1 251
Google Scholar
[6] Anderson P W, Rowell J M 1963 Phys. Rev. Lett. 10 230
Google Scholar
[7] Clarke J, Braginski A I 2004 The SQUID Handbook (Vol. 1) (New Jersey: John Wiley & Sons)
[8] Clarke J, Braginski A I 2004 The SQUID Handbook (Vol. 2) (New Jersey: John Wiley & Sons)
[9] Fagaly R 2006 Rev. Sci. Instrum 77 101101
Google Scholar
[10] Anders S, Blamire M G, Buchholz F Im, Crété D G, Cristianoe R, Febvref P, Fritzsch L, Herr A, Ilichev E, Kohlmann J, Kunert J, Meyer H G, Niemeyer J, Ortlepp T, Rogalla H, Schurig T, Siegel M, Stolz R,Tarte E, Brake H J M ter, Toepfer H, Villegier J C, Zagoskin A M, Zorin A B 2010 Physica C 470 2079
Google Scholar
[11] Körber R, Storm J H, Seton H 2016 Supercond. Sci. Technol. 29 113001
Google Scholar
[12] Clarke J, Lee Y H, Schneiderman J 2018 Supercond. Sci. Technol. 31 080201
Google Scholar
[13] Pulizzi F 2011 Nature Materials 10 262
Google Scholar
[14] Zhang Y, Dong H, Krause H J, Zhang G F, Xie X M 2020 SQUID Readout Electronics and Magnetometric Systems for Practical Applications (New York: Wiley)
[15] Jaklevic R C, Lambe J, Silver A H, Mercereau J E 1964 Phys. Rev. Lett. 12 159
[16] Caputo P, Oppenläder J, Hässler Ch, Tomes J, Friesch A, Träble T, Schopohl N 2004 Appl. Phys. Lett. 85 1389
Google Scholar
[17] Drung D 2003 Supercond. Sci. Technol. 16 1320
Google Scholar
[18] Dantsker E, Tanaka S, Clarke J 1997 Appl. Phys. Lett. 70 2037
Google Scholar
[19] Tesche C D, Clarke J 1977 J. Low Temp. Phys. 27 301
[20] Faley M I, Pratt K, Reineman R, Schurig D, Gott S, Atwood C G, Sarwinski R E, Paulson D N, Starr T N, Fagaly R L 2017 Supercond. Sci. Technol. 30 083001
Google Scholar
[21] Gurvitch M, Washington M, Higgins H 1983 Appl. Phys. Lett. 42 472
Google Scholar
[22] Koelle D, Kleiner R, Ludwig F, Dantsker E, Clarke J 1999 Rev. Mod. Phys. 71 631
Google Scholar
[23] Tafuri F, Kirtley J R 2005 Rep. Prog. Phys. 68 2573
Google Scholar
[24] Dimos D, Chaudhari P, Mannhart J, LeGoues F K 1988 Phys. Rev. Lett. 61 219
Google Scholar
[25] Du J, Lazar J Y, Lam S K H, Mitchell E E, Foley C P 2014 Supercond. Sci. Technol. 27 095005
Google Scholar
[26] Wakana H, Adachi S, Kamitani A, Nakayama K, Ishimaru Y, Tarutani Y, Tanabe K 2005 IEICE Trans. Electron. E88-C 208
Google Scholar
[27] Bergeal N, Lesueur J, Faini G, Aprili M, Contour J 2006 Appl. Phys. Lett. 89 112515
Google Scholar
[28] Trabaldo E, Ruffieux S, Andersson E, Arpaia R, Montemurro D, Schneiderman J F, Kalaboukhov A, Winkler D, Lombardi F, Bauch T 2020 Appl. Phys. Lett. 116 132601
Google Scholar
[29] Cybart S A, Cho E, Wong T, Wehlin B H, Ma M K, Huynh C, Dynes R 2015 Nat. Nanotechnol. 10 598
Google Scholar
[30] Cho E Y, Li H, LeFebvre J C, Zhou Y W, Dynes R, Cybart S A 2018 Appl. Phys. Lett. 113 162602
Google Scholar
[31] Hari R, Salmelin R 2012 NeuroImage 61 386
Google Scholar
[32] Hämäläinen M, Hari R, Ilmoniemi R J, Knuutila J, Lounasmaa O V 1993 Rev. Mod. Phys. 65 413
[33] Mäkelä J P, Forss N, Jääskeläinen J, Kirveskari E, Korvenoja A, Paetau R 2006 Neurosurgery 59 493
Google Scholar
[34] Lee Y H, Kwon H, Yu K K, Kim J M, Lee S K, Kim M Y, Kim K 2017 Supercond. Sci. Technol. 30 084003
Google Scholar
[35] Öisjöen F, Schneiderman J F, Figueras G A, Chukharkin M L, Kalabukhov A, Hedström A, Elam M, Winkler D 2012 Appl. Phys. Lett. 100 132601
Google Scholar
[36] Sander T H, Preusser J, Mhaskar R, Kitching J, Trahms L, Knappe S 2012 Opt. Express 3 981
Google Scholar
[37] Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Muñoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R, Brookes M J 2018 Nature 555 657
Google Scholar
[38] Inaba T, Nakazawa Y, Yoshida K, Kato Y, Hattori A, Kimura T, Hoshi T, Ishizu T, Seo Y, Sato A, Sekiguchi Y, Nogami A, Watanabe S, Horigome H, Kawakami Y, Aonuma K 2017 Supercond. Sci. Technol. 30 114003
Google Scholar
[39] Enpuku K, Tsujita Y, Nakamura K, Sasayama T, Yoshida T 2017 Supercond. Sci. Technol. 30 053002
Google Scholar
[40] Yang S Y, Chieh J J, Yang C C, Liao S H, Chen H H, Horng H E, Yang H C, Hong C Y, Chiu M J, Chen T F, Huang K W, Wu C C 2013 IEEE Trans. Appl. Supercond. 23 1600604
Google Scholar
[41] Clarke J, Hatridge M, Möβle M 2007 Annu. Rev. Biomed. Eng. 9 389
Google Scholar
[42] Dong H, Hwang S M, Wendland M, You L, Clarke J, Inglis B 2017 Magn. Reson. Med. 78 2342
Google Scholar
[43] Buckenmaier K, Pedersen A, SanGiorgio P, Scheffler K, Clarke J, Inglis B 2019 Neuroimage. 186 185
Google Scholar
[44] Busch S E, Hatridge M, Mößle M, Myers W, Wong T, Mück M, Chew K, Kuchinsky K, Simko J, Clarke J 2012 Magn. Reson. Med. 67 1138
Google Scholar
[45] Magnelind P E, Gomez J J, Matlashov A N, Owens T, Sandin J H, Volegov P L, Espy M A 2011 IEEE Trans. Appl. Supercond. 21 456
Google Scholar
[46] Leslie K E, Binks R A, Lam S K H, Sullivan P A, Tilbrook D L, Thorn R G, Foley C P 2008 Leading Edge 27 70
Google Scholar
[47] Hato T, Tsukamoto A, Adachi S, Oshikubo Y, Watanabe H, Ishikawa H, Sugisaki M, Arai E, Tanabe K 2013 Supercond. Sci. Technol. 26 115003
Google Scholar
[48] Chwala A, Stolz R, Schmelz M, Zakosarenko V, Meyer M, Meyer H G 2015 IEICE Trans. Electron. E98.C 167
Google Scholar
[49] Supracon A Ghttp://www.supracon.de/
[50] Song Z, Dai H, Rong L, et al. 2019 IEEE Trans. Appl. Supercond. 29 1600205
[51] Rong L, Bao S, Wu J, et al. 2019 IEEE Trans. Appl. Supercond. 29 1601704
[52] Stolz R, Zakosarenko V, Schulz M, Chwala A, Fritzsch L, Meyer H G, Kötlin E O 2006 Leading Edge 25 178
Google Scholar
[53] Halperin W P 2014 Nat. Phys. 10 467
Google Scholar
[54] Yang C, Si M T, You L X 2020 Sci. China Inf. Sci. 63 180502
Google Scholar
[55] Irwin K D, Cho H M, Doriese W B, Fowler J W, Hilton G C, Niemack M D, Reintsema C D, Schmidt D R, Ullom J N, Vale L R 2012 J. Low Temp. Phys. 167 588
Google Scholar
[56] Sloan J V, Hotz M, Boutan C, et al. 2016 Phys. Dark Universe 14 95
Google Scholar
[57] Asztalos S J, Carosi G, Hagmann C, et al. 2010 Phys. Rev. Lett. 104 041301
Google Scholar
[58] Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969
Google Scholar
[59] Embon L, Anahory Y, Jelić Ž L, Lachman E O, Myasoedov Y, Huber M E, Mikitik G P, Silhanek A V, Milošević M V, Gurevich A, Zeldov E 2017 Nat. Commun. 8 85
Google Scholar
[60] Halbertal D, Cuppens J, M. Ben Shalom Shalom M. B, Embon L, Shadmi N, Anahory Y, Naren H R, Sarkar J, Uri A, Ronen Y, Myasoedov Y, Levitov L S, Joselevich E, Geim A K, Zeldov E 2016 Nature 539 407
Google Scholar
[61] Hatsukade Y, Inaba T, Maruno Y, Tanaka S 2005 IEEE Trans. Appl. Supercond. 15 723
Google Scholar
[62] Krause H J, Michael M M, Tanaka S 2015 SQUlDs in Nondestructive Evaluation. In Applied Superconductivity: Handbook on Devices and Applications (Vol. 2) (Weinheim: Wiley)
[63] Faley M, Kostyurina E, Kalashnikov K, Maslennikov Y, Koshelets V, Dunin-Borkowski R 2017 Sensors 17 2798
Google Scholar
[64] Clarke J, Wilhelm F K 2008 Nature 453 1031
Google Scholar
[65] Krantz J P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318
Google Scholar
[66] Kwon S, Tomonaga A, Gopika L B, Devitt S J, Tsai J S 2020 arXiv:2009.08021 [quant-ph]
[67] Kjaergaard M, Schwartz M E, Braumuller J, Krantz P, Wang J I J, Gustavsson S, Oliver W D 2020 Annu. Rev. Condens. Matter Phys. 11 369
Google Scholar
计量
- 文章访问数: 22052
- PDF下载量: 1771
- 被引次数: 0