Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topological Anderson insulator phase in graphene

WANG Yu LIANG Yulin XING Yanxia

Citation:

Topological Anderson insulator phase in graphene

WANG Yu, LIANG Yulin, XING Yanxia
科大讯飞翻译 (iFLYTEK Translation)
PDF
Get Citation
  • Graphene, a two-dimensional material characterized by its honeycomb lattice structure, has demonstrated significant potential applications in electronic devices. The topological Anderson insulator (TAI) represents a novel phenomenon where a system transforms into a topological phase induced by disorder. In past studies, TAI is widely found in theoretical models such as the BHZ model and the Kane-Mele model. A common feature is that these models can open topological non-trivial gaps by changing their topological mass terms, but the rise of TAI is independent of the topological status of gaps. In order to investigate whether there is any difference in the disorder-induced phase between topologically trivial and topologically non-trivial cases of the Haldane model in the clean limit, the Haldane model in an infinitely long quasi-one-dimensional ZigZag-edged graphene ribbon is considered in this work. The Hamiltonian and band structure of it are analyzed, and the non-equilibrium Green's function theory is used to calculate the transport properties of ribbons under topologically trivial and non-trivial states versus disorder. The conductance, current density, transport coefficient and localisation length are calculated as parameters characterising the transmission properties. It is found from the analysis of the band structure that the system in either topological trivial or topological non-trivial state has edge states. When the Fermi energy lies in the conduction band, the conductance of the system decreases rapidly under weak disorder intensity and strong disorder intensity, regardless of whether the system is topologically non-trivial or not. At moderate disorder intensities, the conductance of topologically non-trivial systems keeps stable with a value of 1, indicating the appearance of the topological Anderson insulator phase in the system. Meanwhile, for topological trivial systems, the decrease of conductance noticeably slows down. The calculations of local current density show that both systems exhibit robust edge states, with topologically protected edge states showing greater robustness. The analysis of the transmission coefficients of edge state and bulk state indicates that the coexistence of bulk states and robust edge states is the basis for the phenomena observed in the Haldane model. Under weak disorder, bulk states are localized, and the transmission coefficient of edge states decreases due to scattering into the bulk states. Under strong disorder, edge states are localized, resulting in zero conductance. However, at moderate disorder strength, bulk states are annihilated while robust edge states persist, thereby reducing scattering from edge states to bulk states. This enhances the transport stability of the system. The fluctuation of conduction and localisation length reveal that the metal-TAI-normal insulator transition occurs in the Haldane model with topological non-trivial gap and if the system is of cylinder shape, there will be no edge states, the TAI will not occur. For the topological trivial gap case, only metal-normal insulator transition can be clearly identified. Therefore, topologically protected edge states are so robust that they generate a conductance plateau and it is demonstrated that the topologically trivial edge states are robust to a certain extent and can resist this level of disorder. The robustness of edge states is a crucial factor for the occurrence of the TAI phenomenon in the Haldane model.
  • 图 1  (a) 当Ny = 2, Nx =4时, ZigZag边界石墨烯条带几何结构图, 红色突出显示系统单位元, 即Nx =1, ${{\boldsymbol{a}}_1}, $${{\boldsymbol{a}}_2}$为格矢; (b) Ny = 80时, 无限大石墨烯平面及ZigZag边界石墨烯条带狄拉克点处带边位置随M 变化图, 图中由绿色线串联的两个绿色星号标记了系统拓扑转变点

    Figure 1.  (a) Geometry of ZigZag graphene ribbon when Ny = 2, Nx = 4, the red rectangles in the figure show the geometry of the unit cell, Nx = 1, ${{\boldsymbol{a}}_1}, $${{\boldsymbol{a}}_2}$arelattice vectors; (b) variation of band edges with M at Dirac points in the infinite graphene plane and ZigZag graphene ribbon for Ny = 80, green stars connected by a green line mark the system topology transition points.

    图 2  (a), (d)无限大石墨烯平面能带结构图, 白色六边形标注了第一布里渊区, 颜色条代表能量E的大小 (a) $M = 0$; (d) $M = $$ 0.52 t$. (b), (c), (e), (f)无限长ZigZag边石墨烯条带能带结构 (b) $M = 0$; (c) $M = 0.3 t$; (e) $M = 0.52 t$; (f) $M = 0.7 t$. 将$M$或$\phi $反号可以使能带的闭合位置转移至另外的狄拉克点

    Figure 2.  (a), (d) Band structure of two-dimensional infinite graphene surface, the first Brillouin zone is marked by the white hexagon in the figure, and the color bar represents the value of energy E: (a) $ M = 0 $; (d) $M = 0.52 t$. (b), (c), (e), (f) Band structure of infinitely long ZigZag-edge graphene ribbon: (b) $M = 0$; (c) $M = 0.3 t$; (e) $M = 0.52 t$; (f) $M = 0.7 t$. Inverting the sign of $M$or $\phi $ shifts the closure position of the energy band to the other Dirac point.

    图 3  Ny = 40, Nx = 69, $ M = 0.3 t $, $ {E_{\text{F}}} = 0.25 t $时, 不同无序强度下体系的局域电流密度Ji分布图 (a) W = 0.8t; (b) W = 2.8t; (c) W = 5t

    Figure 3.  Local current density distribution of the system for different strength of the disorder with Ny = 40, Nx = 69, $ M = 0.3 t $, $ {E_{\text{F}}} = 0.25 t $: (a) W = 0.8t; (b) W = 2.8t; (c) W = 5t.

    图 4  $ M = 0.7 t $时, 不同无序强度下体系的局域电流分布图, 其他参数与图3相同

    Figure 4.  Local current density distribution of the system for different strength of the disorder with $ M = 0.7 t $, and other parameters are the same as Fig. 3.

    图 5  (a), (b)子带传输随无序的变化; (c), (d) 边缘态概率密度y方向分布图; (a), (c) $M = 0.3 t$, ${E_{\text{F}}} = 0.25 t$, Ny = 90, Nx = 156; (b), (d) $ M = 0.7 t $, ${E_{\text{F}}} = 0.25 t$, Ny = 90, Nx = 156

    Figure 5.  (a), (b) Transmissions of eigen channels vs. disorder; (c), (d) edge state probability distribution in y direction; (a), (c) $M = 0.3 t$, ${E_{\text{F}}} = 0.25 t$, Ny = 90, Nx = 156; (b), (d) $ M = 0.7 t $, ${E_{\text{F}}} = 0.25 t$, Ny = 90, Nx = 156.

    图 6  电导、电导涨落及局域化长度随无序的变化. c代表圆筒形(cylinder)结构, r代表条带(ribbon)结构, 由红色点划线串联的星号代表系统相变点 (a)—(c) $ M = 0.3 t $, $ {E_{\text{F}}} = 0.15 t $; (d)—(f) $M = 0.3 t$, ${E_{\text{F}}} = 0.25 t$, 图(f)中实线代表Ny = 34, 虚线代表Ny = 60; (g)—(i) $M = 0.7 t$, ${E_{\text{F}}} = 0.25 t$

    Figure 6.  The conductance, fluctuation of the conductance and the localization length vs. disoder. The c denotes a cylindrical structure and r denotes a striped structure, stars in series by red dotted lines represent phase transition points: (a)–(c) $ M = 0.3 t $, $ {E_{\text{F}}} = 0.15 t $; (d)–(f) $M = 0.3 t$, ${E_{\text{F}}} = 0.25 t$, the solid lines represent Ny = 34 and the dotted lines represent Ny = 60 in panel (f); (g)–(i) $M = 0.7 t$, ${E_{\text{F}}} = 0.25 t$.

    Baidu
  • [1]

    Peres N M R 2010 Rev. Mod. Phys. 82 2673Google Scholar

    [2]

    Peres N M R, Castro Neto A H, Guinea F 2006 Phys. Rev. B 73 195411Google Scholar

    [3]

    Gusynin V P, Sharapov S G 2005 Phys. Rev. Lett. 95 146801Google Scholar

    [4]

    Geim A K 2009 Science 324 1530Google Scholar

    [5]

    Das Sarma S, Adam S, Hwang E H, Rossi E 2011 Rev. Mod. Phys. 83 407Google Scholar

    [6]

    Li T C, Lu S P 2008 Phys. Rev. B 77 085408Google Scholar

    [7]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [9]

    Slonczewski J C, Weiss P R 1958 Phys. Rev. 109 272Google Scholar

    [10]

    Semenoff G W 1984 Phys. Rev. Lett. 53 2449Google Scholar

    [11]

    Thonhauser T, Vanderbilt D 2006 Phys. Rev. B 74 235111Google Scholar

    [12]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [13]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485Google Scholar

    [14]

    Anderson P W 1972 Science 177 393Google Scholar

    [15]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar

    [16]

    Bernevig B A, Hughes T L 2013 Topological Insulators and Topological Superconductors (Princeton: Princeton University Press) pp72–77

    [17]

    Chang Z W, Hao W C, Liu X 2022 J. Phys. : Condens. Matter 34 485502Google Scholar

    [18]

    Wen X G 1989 Phys. Rev. B 40 7387

    [19]

    Sticlet D, Pindens. Matte Phys. Rev. B 87 115402

    [20]

    Yakovenko V M 1990 Phys. Rev. Lett. 65 251Google Scholar

    [21]

    Zhao Y F, Zhang R, Mei R, Zhou L J, Yi H, Zhang Y Q, Yu J, Xiao R, Wang K, Samarth N, Chan M H W, Liu C X, Chang C Z 2020 Nature 588 419Google Scholar

    [22]

    Liu C X, Zhang S C, Qi X L 2016 Annu. Rev. Condens. Matter 7 301Google Scholar

    [23]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [24]

    Chang C Z, Liu C X, MacDonald A H 2023 Rev. Mod. Phys. 95 011002Google Scholar

    [25]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [26]

    Sompet P, Hirthe S, Bourgund D, Chalopin T, Bibo J, Koepsell J, Bojović P, Verresen R, Pollmann F, Salomon G, Gross C, Hilker T A, Bloch I 2022 Nature 606 484Google Scholar

    [27]

    Xu J J, Gu Q, Mueller E J 2018 Phys. Rev. Lett. 120 085301Google Scholar

    [28]

    Simon J 2014 Nature 515 202Google Scholar

    [29]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [30]

    König M, Wiedmann S, Br J 2018 Chalopin T, Bibo J, Koepsell J, Bojović P, Verresen R Science 318 766

    [31]

    Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970Google Scholar

    [32]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398Google Scholar

    [33]

    Li J, Chu R L, Jain J K, Shen S Q 2009 Phys. Rev. Lett. 102 136806Google Scholar

    [34]

    Yamakage A, Nomura K, Imura K I, Kuramoto Y 2011 J. Phys. Soc. Jpn. 80 053703Google Scholar

    [35]

    Guo H M, Rosenberg G, Refael G, Franz M 2010 Phys. Rev. Lett. 105 216601Google Scholar

    [36]

    Liu H, Xie B Y, Wang H N, Liu W W, Li Z C, Cheng H, Tian J G, Liu Z Y, Chen S Q 2023 Phys. Rev. B 108 L161410Google Scholar

    [37]

    Stützer S, Plotnik Y, Lumer Y, Titum P, Lindner N H, Segev M, Rechtsman M C, Szameit A 2018 Nature 560 461Google Scholar

    [38]

    Zhang Z Q, Wu B L, Song J, Jiang H 2019 Phys. Rev. B 100 184202Google Scholar

    [39]

    Chen R, Yi X X, Zhou B 2023 Phys. Rev. B 108 085306Google Scholar

    [40]

    Chen H, Liu Z R, Chen R, Zhou B 2023 Chin. Phys. B 33 017202Google Scholar

    [41]

    Groth C W, Wimmer M, Akhmerov A R, Tworzydło J, Beenakker C W J 2009 Phys. Rev. Lett. 103 196805Google Scholar

    [42]

    Orth C P, Sekera T, Bruder C, Schmidt T L 2016 Sci. Rep. 6 24007Google Scholar

    [43]

    邢燕霞, 梁钰林 2022 山西大学学报(自然科学版) 3 672

    Xing Y X, Lang Y L 2022 J. Shanxi. Univ. (Nat. Sci. Ed. ) 3 672

    [44]

    Wei M, Zhou M, Zhang Y T, Xing Y 2020 Phys. Rev. B 101 155408Google Scholar

    [45]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [46]

    Caroli C, Combescot R, Nozieres P, Saint James D 1971 J. Phys. C: Solid State Phys. 4 916Google Scholar

    [47]

    Xing Y X, Wang J, Sun Q F 2010 Phys. Rev. B 81 165425Google Scholar

    [48]

    Jiang H, Wang L, Sun Q F, Xie X C 2009 Phys. Rev. B 80 165316Google Scholar

    [49]

    Zhang Y Y, Hu J P, Bernevig B A, Wang X R, Xie X C, Liu W M 2008 Phys. Rev. B 78 155413Google Scholar

    [50]

    Jauho A e, Wingreen N S, Meir Y 1994 Phys. Rev. B 50 5528Google Scholar

    [51]

    Nikolić B K, Zârbo L P, Souma S 2006 Phys. Rev. B 73 075303Google Scholar

    [52]

    Cresti A, Grosso G, Parravicini G P 2004 Phys. Rev. B 69 233313Google Scholar

    [53]

    琚鑫, 郭健宏 2011 60 057302Google Scholar

    Ju X, Guo J H 2011 Acta Phys. Sin. 60 057302Google Scholar

    [54]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Ed. 1st) (United Kingdom: Cambridge University Press) pp57–65

    [55]

    许易, 许小言, 张薇, 欧阳滔, 唐超 2019 68 247202Google Scholar

    Xu Y, Xu X Y, Zhang W, Ouyang T, Tang C 2019 Acta Phys. Sin. 68 247202Google Scholar

    [56]

    邢海英, 张子涵, 吴文静, 郭志英, 茹金豆 2023 72 038502Google Scholar

    Xing H Y, Zhang Z H, Wu W J, Guo Z Y, Ru J D 2023 Acta Phys. Sin. 72 038502Google Scholar

    [57]

    闫婕, 魏苗苗, 邢燕霞 2019 68 227301Google Scholar

    Yan J, Wei M M, Xing Y X 2019 Acta Phys. Sin. 68 227301Google Scholar

    [58]

    MacKinnon A, Kramer B 1981 Phys. Rev. Lett. 47 1546Google Scholar

    [59]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [60]

    Chen C Z, Liu H, Xie X C 2019 Phys. Rev. Lett. 122 026601Google Scholar

  • [1] DENG Xiaosong, ZHANG Zhiyong, KANG Ning. Study of hybrid superconducting devices and quantum transport based on one-dimensional electronic systems. Acta Physica Sinica, doi: 10.7498/aps.74.20241672
    [2] Liu Jing-Hu, Xu Zhi-Hao. Random two-body dissipation induced non-Hermitian many-body localization. Acta Physica Sinica, doi: 10.7498/aps.73.20231987
    [3] Ding Jin-Ting, Hu Pei-Jia, Guo Ai-Min. Electron transport in graphene nanoribbons with line defects. Acta Physica Sinica, doi: 10.7498/aps.72.20230502
    [4] Liu Tian, Li Zong-Liang, Zhang Yan-Hui, Lan Kang. Study of quantum speed limit of of transport process of single quantum dot system in dissipative environment. Acta Physica Sinica, doi: 10.7498/aps.72.20222159
    [5] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, doi: 10.7498/aps.72.20230690
    [6] Fang Jing-Yun, Sun Qing-Feng. Thermal dissipation of electric transport in graphene p-n junctions in magnetic field. Acta Physica Sinica, doi: 10.7498/aps.71.20220029
    [7] Liu Jia-Lin, Pang Ting-Fang, Yang Xiao-Sen, Wang Zheng-Ling. Skin effect in disordered non-Hermitian Su-Schrieffer-Heeger. Acta Physica Sinica, doi: 10.7498/aps.71.20221151
    [8] Hu Hai-Tao, Guo Ai-Min. Quantum transport properties of bilayer borophene nanoribbons. Acta Physica Sinica, doi: 10.7498/aps.71.20221304
    [9] Fu Cong, Ye Meng-Hao, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong. Effects of intrachain disorder on photoexcitation in conjugated polymer chains. Acta Physica Sinica, doi: 10.7498/aps.70.20201801
    [10] Zhang Wei-Xi, Li Yong, Tian Chang-Hai, She Yan-Chao. Room-temperature quantum anomalous Hall effect in monolayer BaPb with large magnetocrystalline anisotropy energies. Acta Physica Sinica, doi: 10.7498/aps.70.20210014
    [11] Wu Xin-Yu, Han Wei-Hua, Yang Fu-Hua. Quantum transport relating to impurity quantum dots in silicon nanostructure transistor. Acta Physica Sinica, doi: 10.7498/aps.68.20190095
    [12] Yan Jie, Wei Miao-Miao, Xing Yan-Xia. Dephasing effect of quantum spin topological states in HgTe/CdTe quantum well. Acta Physica Sinica, doi: 10.7498/aps.68.20191072
    [13] Chen Ze-Guo, Wu Ying. Multiple topological phases in phononic crystals. Acta Physica Sinica, doi: 10.7498/aps.66.227804
    [14] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, doi: 10.7498/aps.64.097202
    [15] Zhang Cai-Xia, Guo Hong, Yang Zhi, Luo You-Hua. The magnetic and quantum transport properties of sandwich-structured Tan(B3N3H6)n+1 clusters. Acta Physica Sinica, doi: 10.7498/aps.61.193601
    [16] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Disorder effect on the focus image of phononic crystal panel with negative refraction. Acta Physica Sinica, doi: 10.7498/aps.59.376
    [17] Fu Bang, Deng Wen-Ji. General solutions to spin transportation of electrons through equilateral polygon quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, doi: 10.7498/aps.59.2739
    [18] Li Peng, Deng Wen-Ji. Exact solutions to the transportation of electrons through equilateral polygonal quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, doi: 10.7498/aps.58.2713
    [19] Yin Yong-Qi, Li Hua, Ma Jia-Ning, He Ze-Long, Wang Xuan-Zhang. Quantum transport of multi-terminal coupled-quantum-dot-molecular bridge. Acta Physica Sinica, doi: 10.7498/aps.58.4162
    [20] Liu Xiao-Liang, Xu Hui, Ma Song-Shan, Song Zhao-Quan. The localized properties of electronic states in one-dimensional disordered binary solid. Acta Physica Sinica, doi: 10.7498/aps.55.2949
Metrics
  • Abstract views:  518
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Received Date:  24 July 2024
  • Accepted Date:  08 December 2024
  • Available Online:  27 December 2024

/

返回文章
返回
Baidu
map