Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on transport property of molecular} device with non-collinear electrodes

Yan Rui Wu Ze-Wen Xie Wen-Ze Li Dan Wang Yin

Citation:

First-principles study on transport property of molecular} device with non-collinear electrodes

Yan Rui, Wu Ze-Wen, Xie Wen-Ze, Li Dan, Wang Yin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Molecular device is the ultimate electronic devices in the view point sense of scale size.Electron transport in molecular device shows obvious quantum effect,and the transport property of molecular device will be strongly affected by the chemical and structural details,including the contact position and method between the molecule and electrodes,the angle between two electrodes connecting to the molecule.However,we notice that in the existing reports on device simulations from first principles the two electrodes are always in a collinear case.Even for multi-electrode simulations,one usually used to adopt orthogonal electrodes,namely,each pair of the electrodes is in a collinear case.As the electrode configuration will clearly affect the transport property of a device on a nanometer scale,the first principles quantum transport studies with non-collinear electrodes are of great importance,but have not been reported yet.In this paper,we demonstrate the calculations of a transport system with non-collinear electrodes based on the state-of-the-art theoretical approach where the density functional theory (DFT) is combined with the Keldysh non-equilibrium Green's function (NEGF) formalism. Technically,to model a quantum transport system with non-collinear electrodes,the center scattering region of the transport system is placed into an orthogonal simulation box in all the other quantum transport simulations,while one or two electrodes are simulated within a non-orthogonal box.This small change in the shape of the simulation box of the electrode provides flexibility to calculate transport system with non-collinear electrodes,but also increases the complexity of the background coding.To date,the simulation of transport system with non-collinear electrodes has been realized only in the Nanodcal software package. Here,we take the Au-benzene (mercaptan)-Au molecular devices for example,and systematically calculate the quantum transport properties of the molecular devices with various contact positions and methods,and specifically,we first demonstrate the effect of the angle between the two electrodes on the transport property of molecular device from first principles.In our NEGF-DFT calculations performed by Nanodcal software package,the double- polarized atomic orbital basis is used to expand the physical quantities,and the exchange-correlation is treated in the local density approximation,and atomic core is determined by the standard norm conserving nonlocal pseudo-potential.Simulation results show that the chemical and structural details not only quantitatively affect the current value of the molecular device,but also bring new transport features to a device,such as negative differential resistance.From these results,we can conclude that the physics of a transport system having been investigated in more detail and a larger parameter space such as the effect of the contact model having been assessed by a comparison with ideal contacts,further understanding of the transport system can be made and more interesting physical property of the device can be obtained,which will be useful in designing of emerging electronics.
      Corresponding author: Li Dan, danli@bjtu.edu.cn;yinwang@shu.edu.cn ; Wang Yin, danli@bjtu.edu.cn;yinwang@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774217, 61574014, 61106056) and the Postgraduate Research Opportunities Program of Hongzhiwei Technology (Shanghai) Co., Ltd. (hzwtech-PROP).
    [1]

    Mark R 2013 Nat. Nanotechnol. 8 378

    [2]

    Sun L, Diaz-Fernandez Y A, Gschneidtner T A, Westerlund F, Lara-Avila S, Moth-Poulsen K 2014 Chem. Soc. Rev. 43 7378

    [3]

    Yu Y J, Li Y Y, Wan L H, Wang B, Wei Y D 2013 Mod. Phys. Lett. B 27 1350121

    [4]

    Wang H, Zhou J, Liu X, Yao C, Li H, Niu L, Wang Y, Yin H 2017 Appl. Phys. Lett. 111 172408

    [5]

    Kumar M 2017 Superlattices Microstruct. 101 101

    [6]

    Chen C J, Smeu M, Ratner M A 2014 J. Chem. Phys. 140 054709

    [7]

    Jia C C, Agostino M, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Mark A R, Xu H Q, Abraham N, Guo X F 2016 Science 352 1443

    [8]

    Min W J, Hao H, Wang X L, Zheng X H, Zeng Z 2016 Rsc. Adv. 6 6191

    [9]

    Tao L L, Wang J 2016 Appl. Phys. Lett. 108 062903

    [10]

    Heath J R 2009 Annu. Rev. Mater. Res. 39 1

    [11]

    McCreery R L, Bergren A J 2009 Adv. Mater. 21 4303

    [12]

    Zhao J, Zeng H 2016 RSC Adv. 6 28298

    [13]

    Yu Z Z, Wang J 2015 Phys. Rev. B 91 205431

    [14]

    Chen M Y, Yu Z, Wang Y, Xie Y Q, Wang J, Guo H 2015 Phys. Chem. Chem. Phys. 18 1601

    [15]

    Yu Z, Sun L Z, Zhang C X, Zhong J X 2010 Appl. Phys. Lett. 96 173101

    [16]

    Chen M, Yu Z, Xie Y, Wang Y 2017 Appl. Phys. Lett. 109 142409

    [17]

    Solomon G C, Herrmann C, Hansen T, Mujica V, Ratner M A 2010 Nat. Chem. 2 223

    [18]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509

    [19]

    Ying H, Zhou W X, Chen K Q, Zhou G 2014 Comput. Mater. Sci. 82 33

    [20]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [21]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104

    [22]

    Maassen J, Harb M, Michaud-Rioux V, Zhu Y, Guo H 2013 Proc. IEEE 101 518

    [23]

    Yang Z, Ji Y L, Lan G Q, Xu L C, Liu X G, Xu B S 2015 Solid State Commun. 217 38

    [24]

    Xu B, Tao N J 2003 Science 301 1221

    [25]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2013 Appl. Phys. Lett. 102 023508

    [26]

    Ling Y C, Ning F, Zhou Y H, Chen K Q 2015 Org. Electr. 19 92

    [27]

    Peng J, Zhou Y H, Chen K Q 2015 Org. Electr. 27 137

    [28]

    Li Y H, Yan Q, Zhou L P, Han Q 2015 Acta Phys. Sin. 64 057301 (in Chinese) [李永辉, 闫强, 周丽萍, 韩琴 2015 64 057301]

  • [1]

    Mark R 2013 Nat. Nanotechnol. 8 378

    [2]

    Sun L, Diaz-Fernandez Y A, Gschneidtner T A, Westerlund F, Lara-Avila S, Moth-Poulsen K 2014 Chem. Soc. Rev. 43 7378

    [3]

    Yu Y J, Li Y Y, Wan L H, Wang B, Wei Y D 2013 Mod. Phys. Lett. B 27 1350121

    [4]

    Wang H, Zhou J, Liu X, Yao C, Li H, Niu L, Wang Y, Yin H 2017 Appl. Phys. Lett. 111 172408

    [5]

    Kumar M 2017 Superlattices Microstruct. 101 101

    [6]

    Chen C J, Smeu M, Ratner M A 2014 J. Chem. Phys. 140 054709

    [7]

    Jia C C, Agostino M, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Mark A R, Xu H Q, Abraham N, Guo X F 2016 Science 352 1443

    [8]

    Min W J, Hao H, Wang X L, Zheng X H, Zeng Z 2016 Rsc. Adv. 6 6191

    [9]

    Tao L L, Wang J 2016 Appl. Phys. Lett. 108 062903

    [10]

    Heath J R 2009 Annu. Rev. Mater. Res. 39 1

    [11]

    McCreery R L, Bergren A J 2009 Adv. Mater. 21 4303

    [12]

    Zhao J, Zeng H 2016 RSC Adv. 6 28298

    [13]

    Yu Z Z, Wang J 2015 Phys. Rev. B 91 205431

    [14]

    Chen M Y, Yu Z, Wang Y, Xie Y Q, Wang J, Guo H 2015 Phys. Chem. Chem. Phys. 18 1601

    [15]

    Yu Z, Sun L Z, Zhang C X, Zhong J X 2010 Appl. Phys. Lett. 96 173101

    [16]

    Chen M, Yu Z, Xie Y, Wang Y 2017 Appl. Phys. Lett. 109 142409

    [17]

    Solomon G C, Herrmann C, Hansen T, Mujica V, Ratner M A 2010 Nat. Chem. 2 223

    [18]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509

    [19]

    Ying H, Zhou W X, Chen K Q, Zhou G 2014 Comput. Mater. Sci. 82 33

    [20]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [21]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104

    [22]

    Maassen J, Harb M, Michaud-Rioux V, Zhu Y, Guo H 2013 Proc. IEEE 101 518

    [23]

    Yang Z, Ji Y L, Lan G Q, Xu L C, Liu X G, Xu B S 2015 Solid State Commun. 217 38

    [24]

    Xu B, Tao N J 2003 Science 301 1221

    [25]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2013 Appl. Phys. Lett. 102 023508

    [26]

    Ling Y C, Ning F, Zhou Y H, Chen K Q 2015 Org. Electr. 19 92

    [27]

    Peng J, Zhou Y H, Chen K Q 2015 Org. Electr. 27 137

    [28]

    Li Y H, Yan Q, Zhou L P, Han Q 2015 Acta Phys. Sin. 64 057301 (in Chinese) [李永辉, 闫强, 周丽萍, 韩琴 2015 64 057301]

  • [1] Yan Yan, Sun Feng, Yang Zhi, Kong Cheng-Yu, Ge Yun-Long, Chen Deng-Hui, Qiu Shuai, Li Zong-Liang. Mechanical modulation effects of gold electrodes on geometries and electronic transport properties of azobenzene molecular junctions. Acta Physica Sinica, 2024, 73(8): 088502. doi: 10.7498/aps.73.20231999
    [2] Peng Shu-Ping, Deng Shu-Ling, Liu Qian, Dong Cheng-Qi, Fan Zhi-Qiang. Quantum interference and spin transport in M-OPE molecular devices controlled by N or B atom substitution. Acta Physica Sinica, 2024, 73(10): 108501. doi: 10.7498/aps.73.20240174
    [3] Liu Lin, Sun Feng, Li Yu-Chen, Yan Yan, Liu Bing-Xin, Yang Zhi, Qiu Shuai, Li Zong-Liang. Theoretical study on mechanical evolution process of interface between gold electrode and pyridyl anchor group. Acta Physica Sinica, 2023, 72(4): 048504. doi: 10.7498/aps.72.20222081
    [4] Gao Jian-Hua, Sheng Xin-Li, Wang Qun, Zhuang Peng-Fei. Relativistic spin transport theory for spin-1/2 fermions. Acta Physica Sinica, 2023, 72(11): 112501. doi: 10.7498/aps.72.20222470
    [5] Ding Jin-Ting, Hu Pei-Jia, Guo Ai-Min. Electron transport in graphene nanoribbons with line defects. Acta Physica Sinica, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [6] Peng Shu-Ping, Huang Xu-Dong, Liu Qian, Ren Peng, Wu Dan, Fan Zhi-Qiang. First-principles study of single-molecule-structure determination of dithienoborepin isomers. Acta Physica Sinica, 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [7] Liu Tian, Li Zong-Liang, Zhang Yan-Hui, Lan Kang. Study of quantum speed limit of of transport process of single quantum dot system in dissipative environment. Acta Physica Sinica, 2023, 72(4): 047301. doi: 10.7498/aps.72.20222159
    [8] Fang Jing-Yun, Sun Qing-Feng. Thermal dissipation of electric transport in graphene p-n junctions in magnetic field. Acta Physica Sinica, 2022, 71(12): 127203. doi: 10.7498/aps.71.20220029
    [9] Hu Hai-Tao, Guo Ai-Min. Quantum transport properties of bilayer borophene nanoribbons. Acta Physica Sinica, 2022, 71(22): 227301. doi: 10.7498/aps.71.20221304
    [10] Yan Jie, Wei Miao-Miao, Xing Yan-Xia. Dephasing effect of quantum spin topological states in HgTe/CdTe quantum well. Acta Physica Sinica, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [11] Wu Xin-Yu, Han Wei-Hua, Yang Fu-Hua. Quantum transport relating to impurity quantum dots in silicon nanostructure transistor. Acta Physica Sinica, 2019, 68(8): 087301. doi: 10.7498/aps.68.20190095
    [12] Chen Wei, Chen Run-Feng, Li Yong-Tao, Yu Zhi-Zhou, Xu Ning, Bian Bao-An, Li Xing-Ao, Wang Lian-Hui. Spin-dependent transport properties of a Co-Salophene molecule between graphene nanoribbon electrodes. Acta Physica Sinica, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [13] Chen Ying, Hu Hui-Fang, Wang Xiao-Wei, Zhang Zhao-Jin, Cheng Cai-Ping. Rectifying behaviors induced by B/N-doping in similar right triangle graphene devices. Acta Physica Sinica, 2015, 64(19): 196101. doi: 10.7498/aps.64.196101
    [14] Zhang Cai-Xia, Guo Hong, Yang Zhi, Luo You-Hua. The magnetic and quantum transport properties of sandwich-structured Tan(B3N3H6)n+1 clusters. Acta Physica Sinica, 2012, 61(19): 193601. doi: 10.7498/aps.61.193601
    [15] Fu Bang, Deng Wen-Ji. General solutions to spin transportation of electrons through equilateral polygon quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, 2010, 59(4): 2739-2745. doi: 10.7498/aps.59.2739
    [16] An Yi-Peng, Yang Chuan-Lu, Wang Mei-Shan, Ma Xiao-Guang, Wang De-Hua. First-principles study of electronic transport properties of C20F20 molecule. Acta Physica Sinica, 2010, 59(3): 2010-2015. doi: 10.7498/aps.59.2010
    [17] Li Peng, Deng Wen-Ji. Exact solutions to the transportation of electrons through equilateral polygonal quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
    [18] Li Qiao-Hua, Zhang Zhen-Hua, Liu Xin-Hai, Qiu Ming, Ding Kai-He. Calculation of the electronic transmission spectra of a molecular device using a simplified model. Acta Physica Sinica, 2009, 58(10): 7204-7210. doi: 10.7498/aps.58.7204
    [19] Yin Yong-Qi, Li Hua, Ma Jia-Ning, He Ze-Long, Wang Xuan-Zhang. Quantum transport of multi-terminal coupled-quantum-dot-molecular bridge. Acta Physica Sinica, 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
    [20] Wang Li-Guang, Chen Lei, Yu Ding-Wen, Li Yong, Terence K. S. W.. Dependence of electronic-transport sensitivity on the coupling between single molecule and atomic-chain electrode. Acta Physica Sinica, 2007, 56(11): 6526-6530. doi: 10.7498/aps.56.6526
Metrics
  • Abstract views:  6712
  • PDF Downloads:  272
  • Cited By: 0
Publishing process
  • Received Date:  12 October 2017
  • Accepted Date:  28 December 2017
  • Published Online:  05 May 2018

/

返回文章
返回
Baidu
map