Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Many-body localization of a one-dimensional anyon Stark model

YOU Huimin LIU Jinghu ZHANG Yunbo XU Zhihao

Citation:

Many-body localization of a one-dimensional anyon Stark model

YOU Huimin, LIU Jinghu, ZHANG Yunbo, XU Zhihao
cstr: 32037.14.aps.74.20241615
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this work, a one-dimensional interacting anyon model with a Stark potential in the finite size is studied. Using the fractional Jordan Wigner transformation, the anyons in the one-dimensional system are mapped onto bosons, which are described by the following Hamiltonian:         $ \begin{aligned} \hat{H}^{\text{boson}}=-J\sum_{j=1}^{L-1}\left( \hat{b}_{j}^{\dagger}\hat{b}_{j+1}{\mathrm{e}}^{{\mathrm{i}}\theta \hat{n}_{j}}+{\mathrm{h.c.}}\right)+\frac{U}{2}\sum_{j=1}^{L}\hat{n}_{j}\left( \hat{n}_{j}-1\right)+\sum_{j=1}^{L}{h}_{j}\hat{n}_{j},\;\;\;\;\;\;\;\;\;\end{aligned}$where θ is the statistical angle, and the on-site potential is $h_{j}=-\gamma\left(j-1\right) +\alpha\Big( \dfrac{j-1}{L-1}\Big)^{2}$ with γ representing the strength of the Stark linear potential and α denoting the strength of the nonlinear part. Using the exact diagonalization method, the spectral statistics, half-chain entanglement entropy and particle imbalance are numerically analyzed to investigate the onset of many-body localization (MBL) in this interacting anyon system, induced by increasing the linear potential strength. As the Stark linear potential strength increases, the spectral statistics transforms from a Gaussian ensemble into a Poisson ensemble. In the ergodic phase, except for θ = 0 and π, where the average value of the gap-ratio parameter $\left\langle r\right\rangle\approx 0.53$, due to the destruction of time reversal symmetry, the Hamiltonian matrix becomes a complex Hermit matrix and $\left\langle r\right\rangle\approx 0.6$. In the MBL phase, $\left\langle r\right\rangle\approx 0.39$, which is independent of θ. However, in the intermediate γ regime, the value of $\left\langle r\right\rangle$ strongly depends on the choice of θ. The average of the half-chain entanglement entropy transforms from a volume law into an area law, which allows us to construct a θ-dependent MBL phase diagram. In the ergodic phase, the entanglement entropy S(t) of the half chain increases linearly with time. In the MBL phase, S(t) grows logarithmically with time, reaching a stable value that depends on the anyon statistical angle. The localization of particles in a quench dynamics can provide the evidence for the breakdown of ergodicity and is experimentally observable. It is observed that with the increase of γ, the even-odd particle imbalance changes from zero to non-zero values in the long-time limit. In the MBL phase, the long-time average value of the imbalance is dependent on the anyon statistical angle θ. From the Hamiltonian $\hat{H}^{\text{boson}}$, it can be inferred that the statistical behavior of anyon system equally changes the hopping interactions in boson system, which is a many-body effect. By changing the statistical angle θ, the many-body interactions in the system are correspondingly changed. And the change of the many-body interaction strength affects the occurrence of the MBL transition, which is also the reason for MBL transition changing with the anyon statistical angle θ. Our results provide new insights into the study of MBL in anyon systems and whether such phenomena persist in the thermodynamic limit needs further discussing in the future.
      Corresponding author: ZHANG Yunbo, ybzhang@zstu.edu.cn ; XU Zhihao, xuzhihao@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12375016, 12074340, 12461160324), the Fundamental Research Program of Shanxi Province, China (Grant No. 20210302123442), the Beijing National Laboratory for Condensed Matter Physics (Grant No. 2023BNLCMPKF001), and the Fund for “1331 Project” Key Subjects of Shanxi Province, China.
    [1]

    Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, Bloch I 2015 Science 349 842Google Scholar

    [2]

    Bordia P, Lüschen H P, Hodgman S S, Schreiber M, Bloch I, Schneider U 2016 Phys. Rev. Lett. 116 140401Google Scholar

    [3]

    Smith J, Lee A, Richerme P, Neyenhuis B, Hess P W, Hauke P, Heyl M, Huse D A, Monroe C 2016 Nat. Phys. 12 907Google Scholar

    [4]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar

    [5]

    Guo Q, Cheng C, Sun Z H, Song Z, Li H, Wang Z, Ren W, Dong H, Zheng D, Zhang Y R, Mondaini R, Fan H, Wang H 2021 Nat. Phys. 17 234Google Scholar

    [6]

    Guo Q J, Cheng C, Li H K, Xu S B, Zhang P F, Wang Z, Song C, Liu W X, Ren W H, Dong H, Mondaini R, Wang H 2021 Phys. Rev. Lett. 127 240502Google Scholar

    [7]

    Morong W, Liu F, Becker P, Collins K S, Feng L, Kyprianidis A, Pagano G, You T, Gorshkov A V, Monroe C 2021 Nature 599 393Google Scholar

    [8]

    Scherg S, Kohlert T, Sala P, Pollmann F, Hebbe Madhusudhana B, Bloch I, Aidelsburger M 2021 Nat. Commun. 12 4490Google Scholar

    [9]

    Liu J H, Xu Z H 2023 Phys. Rev. B 108 184205Google Scholar

    [10]

    Leinaas J M, Myrheim J 1977 Nuovo Cimento Soc. Ital. Fis. B 37 1Google Scholar

    [11]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [12]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395Google Scholar

    [13]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [14]

    Kitaev A 2006 Ann. Phys. 321 2Google Scholar

    [15]

    Stern A 2008 Ann. Phys. 323 204Google Scholar

    [16]

    Haldane F D M 1991 Phys. Rev. Lett. 67 937Google Scholar

    [17]

    Vitoriano C, Coutinho-Filho M D 2009 Phys. Rev. Lett. 102 146404Google Scholar

    [18]

    Keilmann T, Lanzmich S, McCulloch I, Roncaglia M 2011 Nat. Commun. 2 361Google Scholar

    [19]

    Greschner S, Santos L 2015 Phys. Rev. Lett. 115 053002Google Scholar

    [20]

    Sträter C, Srivastava S C L, Eckardt A 2016 Phys. Rev. Lett. 117 205303Google Scholar

    [21]

    Zuo Z W, Li G L, Li L 2018 Phys. Rev. B 97 115126Google Scholar

    [22]

    Liu F, Garrison J R, Deng D L, Gong Z X, Gorshkov A V 2018 Phys. Rev. Lett. 121 250404Google Scholar

    [23]

    Zhang G Q, Zhang D W, Li Z, Wang Z D, Zhu S L 2020 Phys. Rev. B 102 054204Google Scholar

    [24]

    Wang Y Y, Sun Z H, Fan H 2021 Phys. Rev. B 104 205122Google Scholar

    [25]

    王利, 贾丽芳, 张云波 2022 71 130501Google Scholar

    Wang L, Jia L F, Zhang Y B 2022 Acta. Rhys. Sin. 71 130501Google Scholar

    [26]

    刘敬鹄, 徐志浩 2024 73 077202Google Scholar

    Liu J H, Xu Z H 2024 Acta. Rhys. Sin. 73 077202Google Scholar

    [27]

    Wu H, Vallières M, Feng D H, Sprung D W L 1990 Phys. Rev. A 42 1027Google Scholar

    [28]

    Hamazaki R, Kawabata K, Kura N, Ueda M 2020 Phys. Rev. Res. 2 023286Google Scholar

    [29]

    Oganesyan V, Huse D A 2007 Phys. Rev. B 75 155111Google Scholar

    [30]

    Serbyn M, Papić Z, Abanin D A 2013 Phys. Rev. Lett. 111 127201Google Scholar

    [31]

    Van Nieuwenburg E, Baum Y, Refael G 2019 Proc. Natl. Acad. Sci. U.S.A. 116 9269Google Scholar

  • 图 1  (a) 不同统计角θ下平均能级差比率$ \langle r\rangle $与Stark线性势强度γ的关系; (b) 平均能级差比率$ \langle r\rangle $在不同线性势强度γ下与统计角θ的关系, 其中L = 12

    Figure 1.  (a) The mean value of the gap-ratio parameter $ \langle r\rangle $ as a function of the Stark linear potential strength γ for different statistical angles θ; (b) $ \langle r\rangle $ as a function of the statistical angle θ for different γ. Here, L = 12.

    图 2  (a) 线性势强度分别为$ \gamma=1 $和6时, 不同统计角的平均半链纠缠熵与系统尺寸L的关系图; (b)当$ L=12 $, $ \gamma=2 $时, 平均半链纠缠熵随统计角θ的变化趋势; (c) 任意子统计角分别为$ \theta=0.05{\mathrm{\pi}} $和$ 0.9\pi $时, 不同尺寸的平均半链纠缠熵$ \langle S\rangle /L $随线性势强度γ的变化; (d) 多体局域化转变点$ \gamma_{\mathrm{c}} $随着统计角θ变化的情况. I和II区域分别为多体局域相和遍历相

    Figure 2.  (a) The average half-chain entanglement entropy $ \langle S\rangle $ as a function of the system size L for different θ with $ \gamma=1 $ and $ 6 $; (b) $ \langle S\rangle $ as a function of θ with $ \gamma=2 $ and $ L=12 $; (c) $ \langle S\rangle /L $ as a function of γ for $ \theta=0.05\pi $ and $ 0.9\pi $; (d) the many-body transition points $ \gamma_{\mathrm{c}} $ as a function of θ, where region I and region II correspond to many-body localization and ergodic phases, respectively.

    图 3  (a) 不同θγ时半链纠缠熵$ S(t) $随时间t的演化行为; (b) 对于不同的γ, 半链纠缠熵平均值$ \overline{S} $随统计角θ的变化情况; (c) 不同θγ时, 粒子非平衡态占据数$ \mathcal{I}\left( t\right) $随时间演化的情况; (d) 对于不同的γ, 非平衡态占据数平均值$ \overline{\mathcal{I}} $随统计角θ的变化情况, 其中$ L=12 $

    Figure 3.  (a) Evolution of the half-chain entanglement entropy $ S(t) $ vs. t for different θ and γ; (b) $ \overline{S} $ as a function of θ for different γ; (c) evolution of the particle imbalance $ \mathcal{I}\left( t\right) $ for different θ and γ; (d) $ \overline{\mathcal{I}} $ as a function of θ for different γ. Here, $ L=12 $.

    Baidu
  • [1]

    Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, Bloch I 2015 Science 349 842Google Scholar

    [2]

    Bordia P, Lüschen H P, Hodgman S S, Schreiber M, Bloch I, Schneider U 2016 Phys. Rev. Lett. 116 140401Google Scholar

    [3]

    Smith J, Lee A, Richerme P, Neyenhuis B, Hess P W, Hauke P, Heyl M, Huse D A, Monroe C 2016 Nat. Phys. 12 907Google Scholar

    [4]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar

    [5]

    Guo Q, Cheng C, Sun Z H, Song Z, Li H, Wang Z, Ren W, Dong H, Zheng D, Zhang Y R, Mondaini R, Fan H, Wang H 2021 Nat. Phys. 17 234Google Scholar

    [6]

    Guo Q J, Cheng C, Li H K, Xu S B, Zhang P F, Wang Z, Song C, Liu W X, Ren W H, Dong H, Mondaini R, Wang H 2021 Phys. Rev. Lett. 127 240502Google Scholar

    [7]

    Morong W, Liu F, Becker P, Collins K S, Feng L, Kyprianidis A, Pagano G, You T, Gorshkov A V, Monroe C 2021 Nature 599 393Google Scholar

    [8]

    Scherg S, Kohlert T, Sala P, Pollmann F, Hebbe Madhusudhana B, Bloch I, Aidelsburger M 2021 Nat. Commun. 12 4490Google Scholar

    [9]

    Liu J H, Xu Z H 2023 Phys. Rev. B 108 184205Google Scholar

    [10]

    Leinaas J M, Myrheim J 1977 Nuovo Cimento Soc. Ital. Fis. B 37 1Google Scholar

    [11]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [12]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395Google Scholar

    [13]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [14]

    Kitaev A 2006 Ann. Phys. 321 2Google Scholar

    [15]

    Stern A 2008 Ann. Phys. 323 204Google Scholar

    [16]

    Haldane F D M 1991 Phys. Rev. Lett. 67 937Google Scholar

    [17]

    Vitoriano C, Coutinho-Filho M D 2009 Phys. Rev. Lett. 102 146404Google Scholar

    [18]

    Keilmann T, Lanzmich S, McCulloch I, Roncaglia M 2011 Nat. Commun. 2 361Google Scholar

    [19]

    Greschner S, Santos L 2015 Phys. Rev. Lett. 115 053002Google Scholar

    [20]

    Sträter C, Srivastava S C L, Eckardt A 2016 Phys. Rev. Lett. 117 205303Google Scholar

    [21]

    Zuo Z W, Li G L, Li L 2018 Phys. Rev. B 97 115126Google Scholar

    [22]

    Liu F, Garrison J R, Deng D L, Gong Z X, Gorshkov A V 2018 Phys. Rev. Lett. 121 250404Google Scholar

    [23]

    Zhang G Q, Zhang D W, Li Z, Wang Z D, Zhu S L 2020 Phys. Rev. B 102 054204Google Scholar

    [24]

    Wang Y Y, Sun Z H, Fan H 2021 Phys. Rev. B 104 205122Google Scholar

    [25]

    王利, 贾丽芳, 张云波 2022 71 130501Google Scholar

    Wang L, Jia L F, Zhang Y B 2022 Acta. Rhys. Sin. 71 130501Google Scholar

    [26]

    刘敬鹄, 徐志浩 2024 73 077202Google Scholar

    Liu J H, Xu Z H 2024 Acta. Rhys. Sin. 73 077202Google Scholar

    [27]

    Wu H, Vallières M, Feng D H, Sprung D W L 1990 Phys. Rev. A 42 1027Google Scholar

    [28]

    Hamazaki R, Kawabata K, Kura N, Ueda M 2020 Phys. Rev. Res. 2 023286Google Scholar

    [29]

    Oganesyan V, Huse D A 2007 Phys. Rev. B 75 155111Google Scholar

    [30]

    Serbyn M, Papić Z, Abanin D A 2013 Phys. Rev. Lett. 111 127201Google Scholar

    [31]

    Van Nieuwenburg E, Baum Y, Refael G 2019 Proc. Natl. Acad. Sci. U.S.A. 116 9269Google Scholar

  • [1] Liu Jing-Hu, Xu Zhi-Hao. Random two-body dissipation induced non-Hermitian many-body localization. Acta Physica Sinica, 2024, 73(7): 077202. doi: 10.7498/aps.73.20231987
    [2] Wang Li, Jia Li-Fang, Zhang Yun-Bo. Quantum dynamics and correlations of indistinguishable anyons in one-dimensional lattices. Acta Physica Sinica, 2022, 71(13): 130501. doi: 10.7498/aps.70.20220188
    [3] Wang Li,  Jia Lifang,  Zhang Yunbo. Quantum Dynamics and Correlations of Indistinguishable Anyons in One-Dimensional Lattices. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220188
    [4] Wu Jian, Bai Xiao-Chun, Xiao Yong, Geng Ming-Xin, Yu Dian-Long, Wen Ji-Hong. Low frequency band gaps and vibration reduction properties of a multi-frequency locally resonant phononic plate. Acta Physica Sinica, 2016, 65(6): 064602. doi: 10.7498/aps.65.064602
    [5] Dong Hui-Jie, Wang Xin-Yu, Li Chang-Yong, Jia Suo-Tang. Stark structure of atomic gallium. Acta Physica Sinica, 2015, 64(9): 093201. doi: 10.7498/aps.64.093201
    [6] Liu Jian-Ping, Hou Shun-Yong, Wei Bin, Yin Jian-Ping. Theoretical studies of electrostatic Stark deceleration for subsonic NH3 molecular beams. Acta Physica Sinica, 2015, 64(17): 173701. doi: 10.7498/aps.64.173701
    [7] Yu Zhi-Qing, Wang Xun, Liu Yan-Xia, Wang Mei, Yang He, Xue Xiang-Xin. Construction of Lennard-Jones pair potential and pairwise many-body potential for crystal α-boron. Acta Physica Sinica, 2015, 64(10): 103401. doi: 10.7498/aps.64.103401
    [8] Cheng Cong, Wu Fu-Gen, Zhang Xin, Yao Yuan-Wei. Phononic crystal multi-channel low-frequency filter based on locally resonant unit. Acta Physica Sinica, 2014, 63(2): 024301. doi: 10.7498/aps.63.024301
    [9] Wen Qi-Hua, Zuo Shu-Guang, Wei Huan. Locally resonant elastic wave band gaps in flexural vibration of multi-oscillators beam. Acta Physica Sinica, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [10] Wei Gao-Feng, Long Chao-Yun, Qin Shui-Jie, Zhang Xin. Analytical approximations to the arbitrary l-wave bound state solutions of the Klein-Gordon equation for the Manning-Rosen potential. Acta Physica Sinica, 2008, 57(11): 6730-6735. doi: 10.7498/aps.57.6730
    [11] Zhang Gui-Yin, Jin Yi-Dong. Optical-optical double-color and double-resonance multiphoton ionization spectrum of NO2. Acta Physica Sinica, 2008, 57(1): 132-136. doi: 10.7498/aps.57.132
    [12] Huang Shi-Zhong, Zhang Peng-Fei, Ruan Tu-Nan, Wu Ning, Zheng Zhi-Peng. The propagator for an arbitrary integral spin. Acta Physica Sinica, 2003, 52(8): 1882-1890. doi: 10.7498/aps.52.1882
    [13] . Acta Physica Sinica, 2002, 51(2): 399-405. doi: 10.7498/aps.51.399
    [14] Wang Fan- hou, Yang Chuan-lu, Li Xi-jun, Jing Fu-qian. Studies on Many-Body Interactions and Molecular Dynamics Simulations for the Hugoniot Curves of Liquid Argon. Acta Physica Sinica, 2000, 49(1): 114-118. doi: 10.7498/aps.49.114
    [15] WANG HONG-YAN, GAO TAO, YI YOU-GEN, TAN MING-LIANG, ZHU ZHENG-HE, FU YI-BEI, WANG XIAO-LIN, SUN YING. ANALYTICAL POTENTIAL ENERGY FUNCTION FOR THE GROUND STATE (3Σ+u) OF UO2. Acta Physica Sinica, 1999, 48(12): 2215-2221. doi: 10.7498/aps.48.2215
    [16] SHI YUN-LONG, ZHANG YU-MEI, CHEN HONG, WU XIANG. PHASE EIAGRAM OF ONE-DIMENSIONAL BOSONS IN AN ARRAY OF LOCAL POTENTIALS. Acta Physica Sinica, 1998, 47(11): 1870-1878. doi: 10.7498/aps.47.1870
    [17] PAN ZHENG-YING, LI RONG-WU. SIMULATIONS OF INTERACTIONS BETWEEN GOLD CLUSTERS AND GOLD THIN FILMS WITH A MANY-BODY POTENTIAL(Ⅰ)──SURFACE DAMAGES INDUCED BY GOLD CLUSTERS. Acta Physica Sinica, 1996, 45(1): 161-168. doi: 10.7498/aps.45.161
    [18] WANG REN-ZHI, HUANG MEI-CHUN. STUDY OF OPTIC AL-PHONON DEFORMATION POTENTIALS IN Ga1-xAlxAs. Acta Physica Sinica, 1990, 39(11): 1778-1784. doi: 10.7498/aps.39.1778
    [19] PANG GEN-DI, CAI JIAN-HUA. PHONON LOCALIZATION IN INHOMOGENEOUS DISORDERED SYSTEMS. Acta Physica Sinica, 1988, 37(4): 688-690. doi: 10.7498/aps.37.688
    [20] SHI KANG-JIE. THE GAUGE POTENTIAL OF MOVING MONOPOLE. Acta Physica Sinica, 1983, 32(11): 1426-1434. doi: 10.7498/aps.32.1426
Metrics
  • Abstract views:  614
  • PDF Downloads:  27
  • Cited By: 0
Publishing process
  • Received Date:  20 November 2024
  • Accepted Date:  18 December 2024
  • Available Online:  25 December 2024
  • Published Online:  20 February 2025

/

返回文章
返回
Baidu
map