-
Owing to the large losses in the conversion process of traditional polarization converters, there is an increasing demand for metasurfaces with excellent transmission performance. In this work, an efficient polarization conversion metasurface is proposed based on electromagnetically induced transparency-like (EIT-like) effect in the terahertz band. The multi-level bright mode paths are excited by an asymmetric structure to obtain orthogonal circular polarization conversion windows. The transmission window is generated by the mutual interference of two sets of bright modes with similar resonant frequencies. Then an asymmetric structure is constructed to achieve transmission window shift under TE polarization and TM polarization, thereby realizing dual-frequency polarization conversion. The metamaterial unit structure consists of four open metal resonant rings and four metal resonant strips. The working mechanism is explored by analyzing the surface current distribution, frequency response, and incident angle characteristics. The results show that electromagnetically induced transparency can be achieved under different polarizations. Furthermore, based on the EIT resonance between the two incident polarizations, the conversion from linear polarization to right-hand circular polarization is achieved at 0.692 THz, and the conversion from linear polarization to left-hand circular polarization is realized at 0.782 THz, transmission coefficients are 0.7 and 0.68 respectively. According to the Stokes parameters, the corresponding ellipticity η values are 96% and 98%, respectively. This EIT-based polarization conversion metasurface with low loss and ultra-thin characteristics has great potential applications in compact antennas, derived radar phased arrays, and military detectors.
-
Keywords:
- metamaterials /
- electromagnetic induced transparency effect /
- polarization conversion /
- filters
[1] Zheng D, Lin Y S 2020 Adv. Mater. Technol. 5 202000584
Google Scholar
[2] Mutlu M, Ozbay E 2012 Appl. Phys. Lett. 100 051909
Google Scholar
[3] Yan D, Wang B B, Bai Z Y, Li W B 2020 Opt. Express 28 9677
Google Scholar
[4] Li A D, Chen W J, Wei H, Lu G W, Alù A, Qiu C W, Chen L 2022 Phys. Rev. Lett. 129 127401
Google Scholar
[5] Huang Z R, Zheng Y Q, Li J H, Cheng Y Z, Wang J, Zhou Z K, Chen L 2023 Nano. Lett. 23 10991
Google Scholar
[6] 王哲飞, 李超, 万发雨, 曾庆生, 傅佳辉, 吴群, 宋明歆 2024 光学学报 44 1624002
Google Scholar
Wang Z F, Li C, Wan F Y, Zeng Q S, Fu J H, Wu Q, Song M X 2024 Acta Opt. Sin. 44 1624002
Google Scholar
[7] Guan D F, You P, Zhang Q, Xiao K, Yong S W 2017 IEEE Trans. Microw. Theory Tech. 65 4925
Google Scholar
[8] Liang D C, Zhang H F, Gu J Q, Li Y F, Tian Z, Ouyang C M, Han J G, Zhang W L 2017 IEEE J. Select. Topics Quantum Electron. 23 4700907
Google Scholar
[9] Deng Y D, Song Z Y 2020 Opt. Mater. 105 109972
Google Scholar
[10] Li F, Zhang T, Mao M, Zhang H F 2020 J. Opt. 22 095106
Google Scholar
[11] Prakash D, Gupta N 2022 Int. J. Microw. Wirel. Technol. 14 19
Google Scholar
[12] Han L, Tan Q L, Gan Y, Zhang W D, Xiong J J 2020 Results Phys. 19 103377
Google Scholar
[13] Wang Q, Kuang K L, Gao H X, Chu S W, Yu L, Peng W 2021 Nanomaterials 11 1350
Google Scholar
[14] Sarkar R, Devi K M, Ghindani D, Prabhu S S, Chowdhury D R, Kumar G 2020 J. Opt. 22 035105
Google Scholar
[15] Li H M, Liu S B, Liu S Y, Wang S Y, Zhang H F, Bian B R, Kong X K 2015 Appl. Phys. Lett. 106 114101
Google Scholar
[16] Li H M, Liu S B, Liu S Y, Wang S Y, Ding G W, Yang H, Yu Z Y, Zhang H F 2015 Appl. Phys. Lett. 106 083511
Google Scholar
[17] Srijan D, Lalita U 2023 NDT E. Int. 139 102908
Google Scholar
[18] Lang T T, Yu Z Y, Zhang J H, Hong Z, Liu J J, Wang P 2023 Sensor Actuat. A-Phys. 360 114522
Google Scholar
[19] Zhu L, Dong L, Guo J, Meng F Y, He X J, Zhao C H, Wu Q 2018 Plasmonics 13 1971
Google Scholar
[20] Yang D, Shen Z Y, Xia Y Q 2021 Appl. Phys. B 127 87
Google Scholar
[21] Gao C J, Guo Z H, Sun Y Z, Zhang H F 2022 Opt. Laser Technol. 151 108006
Google Scholar
[22] Yang Y S, Guan D F, Fu Y F, Gu Z Y, Zhang J D, Qian Z P, Wu W 2024 IEEE Antenn. Wirel. Pr. 23 1035
Google Scholar
[23] Khanikaev B, Mousavi S H, Wu C H, Dabidian N, Alici K B, Shvets G 2012 Opt. Commun. 285 3423
Google Scholar
[24] Sun Y Z, Zhang D, Zhang H F 2022 Opt. Express 30 30574
Google Scholar
[25] Meng D J, Wang S Y, Sun X L, Gong R Z, Chen C H 2014 Appl. Phys. Lett. 104 261902
Google Scholar
-
图 2 不同单元结构的透射谱 (a) TM极化波下的不同基本结构透射谱、表面电流以及磁场图分布图; (b) TE极化波下的不同结构透射谱、表面电流以及磁场图分布图; (c) 整体结构的透射谱; (d) 类EIT效应的能级系统
Figure 2. Transmission spectra of different unit structures: (a) Transmission spectra, surface currents, and magnetic field maps of different basic structures under TM polarized waves; (b) transmission spectra, surface currents, and magnetic field maps of different structures under TE polarized waves; (c) transmission spectrum of the overall structure; (d) energy level systems of class EIT effects.
-
[1] Zheng D, Lin Y S 2020 Adv. Mater. Technol. 5 202000584
Google Scholar
[2] Mutlu M, Ozbay E 2012 Appl. Phys. Lett. 100 051909
Google Scholar
[3] Yan D, Wang B B, Bai Z Y, Li W B 2020 Opt. Express 28 9677
Google Scholar
[4] Li A D, Chen W J, Wei H, Lu G W, Alù A, Qiu C W, Chen L 2022 Phys. Rev. Lett. 129 127401
Google Scholar
[5] Huang Z R, Zheng Y Q, Li J H, Cheng Y Z, Wang J, Zhou Z K, Chen L 2023 Nano. Lett. 23 10991
Google Scholar
[6] 王哲飞, 李超, 万发雨, 曾庆生, 傅佳辉, 吴群, 宋明歆 2024 光学学报 44 1624002
Google Scholar
Wang Z F, Li C, Wan F Y, Zeng Q S, Fu J H, Wu Q, Song M X 2024 Acta Opt. Sin. 44 1624002
Google Scholar
[7] Guan D F, You P, Zhang Q, Xiao K, Yong S W 2017 IEEE Trans. Microw. Theory Tech. 65 4925
Google Scholar
[8] Liang D C, Zhang H F, Gu J Q, Li Y F, Tian Z, Ouyang C M, Han J G, Zhang W L 2017 IEEE J. Select. Topics Quantum Electron. 23 4700907
Google Scholar
[9] Deng Y D, Song Z Y 2020 Opt. Mater. 105 109972
Google Scholar
[10] Li F, Zhang T, Mao M, Zhang H F 2020 J. Opt. 22 095106
Google Scholar
[11] Prakash D, Gupta N 2022 Int. J. Microw. Wirel. Technol. 14 19
Google Scholar
[12] Han L, Tan Q L, Gan Y, Zhang W D, Xiong J J 2020 Results Phys. 19 103377
Google Scholar
[13] Wang Q, Kuang K L, Gao H X, Chu S W, Yu L, Peng W 2021 Nanomaterials 11 1350
Google Scholar
[14] Sarkar R, Devi K M, Ghindani D, Prabhu S S, Chowdhury D R, Kumar G 2020 J. Opt. 22 035105
Google Scholar
[15] Li H M, Liu S B, Liu S Y, Wang S Y, Zhang H F, Bian B R, Kong X K 2015 Appl. Phys. Lett. 106 114101
Google Scholar
[16] Li H M, Liu S B, Liu S Y, Wang S Y, Ding G W, Yang H, Yu Z Y, Zhang H F 2015 Appl. Phys. Lett. 106 083511
Google Scholar
[17] Srijan D, Lalita U 2023 NDT E. Int. 139 102908
Google Scholar
[18] Lang T T, Yu Z Y, Zhang J H, Hong Z, Liu J J, Wang P 2023 Sensor Actuat. A-Phys. 360 114522
Google Scholar
[19] Zhu L, Dong L, Guo J, Meng F Y, He X J, Zhao C H, Wu Q 2018 Plasmonics 13 1971
Google Scholar
[20] Yang D, Shen Z Y, Xia Y Q 2021 Appl. Phys. B 127 87
Google Scholar
[21] Gao C J, Guo Z H, Sun Y Z, Zhang H F 2022 Opt. Laser Technol. 151 108006
Google Scholar
[22] Yang Y S, Guan D F, Fu Y F, Gu Z Y, Zhang J D, Qian Z P, Wu W 2024 IEEE Antenn. Wirel. Pr. 23 1035
Google Scholar
[23] Khanikaev B, Mousavi S H, Wu C H, Dabidian N, Alici K B, Shvets G 2012 Opt. Commun. 285 3423
Google Scholar
[24] Sun Y Z, Zhang D, Zhang H F 2022 Opt. Express 30 30574
Google Scholar
[25] Meng D J, Wang S Y, Sun X L, Gong R Z, Chen C H 2014 Appl. Phys. Lett. 104 261902
Google Scholar
Catalog
Metrics
- Abstract views: 1793
- PDF Downloads: 50
- Cited By: 0