搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可见光波段超材料的平面聚焦效应

相建凯 马忠洪 赵延 赵晓鹏

引用本文:
Citation:

可见光波段超材料的平面聚焦效应

相建凯, 马忠洪, 赵延, 赵晓鹏

Planar focus effect of visible light metamaterials

Xiang Jian-Kai, Ma Zhong-Hong, Zhao Yan, Zhao Xiao-Peng
PDF
导出引用
  • 基于超材料双鱼网结构物理模型,设计了树枝状结构+树枝状结构、树枝状结构+银膜和树枝状结构+氧化铟锡玻璃三种可见光波段超材料复合结构.采用双模板辅助化学电沉积方法,制备出金属银树枝状结构阵列和银膜,分别实现了这三种复合结构.透射和反射实验表明,三种复合结构具有类似的行为.比较发现,树枝状结构+氧化铟锡玻璃复合结构具有损耗低和平面聚焦效应明显的优点.通过调节实验条件,分别制备出能够实现平面聚焦的红绿蓝三种可见光波段超材料.
    In this paper are described three composite structures of visible light metamaterials, i.e. dendritic structures and dendritic structures, dendritic structures and silver film, dendritic structures and indium tin oxide slice, based on the physical model of “double-fishnet” structure. By double template-assisted electrochemical deposition, silver dendritic structure arrays and silver films are fabricated, which is useful for achieving the above three composite structures. It is revealed that all of the three composite structures have the same effects according to the transmission spectra and reverberation spectra.A comparison among all of the three composite structures clealy shows that the composite structure of dendritic structures and indium tin oxide slice has the best performance, such as low loss and distinct planar focus effect. Through adjusting the experiment conditions, three kinds of visible light metamaterials are prepared which can realize planar focus effects at red, green and blue light frequencies, separately.
    • 基金项目: 国家自然科学基金(批准号:50632030,50872113)和国家重点基础研究发展计划(批准号:2004CB719805)资助的课题.
    [1]

    [1] Veselago V G 1968 Sov. Hys. Usp. 10 509

    [2]

    [2] Seddon N, Bearpark T 2003 Science 302 1537

    [3]

    [3] Parazzoli C G, Greegor R B, Li K, Koltenbah B E C, Tanielian M 2003 Phys. Rev. Lett. 90 107401

    [4]

    [4] Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [5]

    [5] Houck A A, Brock J B, Chuang I L 2003 Phys. Rev. Lett. 90 137401

    [6]

    [6] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [7]

    [7] Shelby R, Smith D R, Schulrz S 2001 Science 292 77

    [8]

    [8] Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X 2004 Science 303 1494

    [9]

    [9] Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou J F, Koschny T, Soukoulis C M 2005 Phys. Rev. Lett. 95 203901

    [10]

    ] Zhang S, Fan W, Minhas B K, Frauenglass A, Malloy K J, Brueck S R J 2005 Phys. Rev. Lett. 95 137404

    [11]

    ] Dolling G, Wegener M, Soukoulis C M, Linden S 2007 Opt. Lett. 32 53

    [12]

    ] Mary A, Rodrigo S G, Garcia-Vidal F J, Martin-Moreno L 2008 Phys. Rev. Lett. 101 103902

    [13]

    ] Tang S W, Zhu W R, Zhao X P 2009 Acta Phys. Sin. 58 3220 (in Chinese) [汤世伟、朱卫仁、赵晓鹏 2009 58 3220]

    [14]

    ] Zhou X, Fu Q H, Zhao J,Yang Y, Zhao X P 2006 Opt. Express 14 7188

    [15]

    ] Zhou X, Zhao X P 2007 Appl. Phys. Lett. 91 181908

    [16]

    ] Zhao X P, Zhao Q, Kang L, Song J, Fu Q H 2005 Phys. Lett. A 346 87

    [17]

    ] Kang L, Zhao Q, Zhao X P 2004 Acta Phys. Sin. 53 3379 (in Chinese) [康雷、赵乾、赵晓鹏 2004 53 3379]

    [18]

    ] Zhao Q, Zhao X P, Kang L, Zhang F L, Liu Y H, Luo C R 2004 Acta Phys. Sin. 53 2206 (in Chinese) [赵乾、赵晓鹏、康雷、张富利、刘亚红、罗春荣 2004 53 2206]

    [19]

    ] Zheng Q, Zhao X P, Li M M, Zhao J 2006 Acta Phys. Sin. 55 6441 (in Chinese) [郑晴、赵晓鹏、李明明、赵晶 2006 55 6441]

    [20]

    ] Liu H, Zhao X P, Yang Y, Li Q W, Lü J 2008 Adv. Mater. 20 2050

    [21]

    ] Liu B Q, Zhao X P, Zhu W R, Luo W, Cheng X C 2008 Adv. Funct. Mater. 18 3523

    [22]

    ] Yang Y, Liu H, Lü J, Zhao X P 2008 J. Funct. Mater. 39 786 (in Chinese) [杨阳、刘辉、吕军、赵晓鹏 2008 功能材料 39 786]

  • [1]

    [1] Veselago V G 1968 Sov. Hys. Usp. 10 509

    [2]

    [2] Seddon N, Bearpark T 2003 Science 302 1537

    [3]

    [3] Parazzoli C G, Greegor R B, Li K, Koltenbah B E C, Tanielian M 2003 Phys. Rev. Lett. 90 107401

    [4]

    [4] Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [5]

    [5] Houck A A, Brock J B, Chuang I L 2003 Phys. Rev. Lett. 90 137401

    [6]

    [6] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [7]

    [7] Shelby R, Smith D R, Schulrz S 2001 Science 292 77

    [8]

    [8] Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X 2004 Science 303 1494

    [9]

    [9] Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou J F, Koschny T, Soukoulis C M 2005 Phys. Rev. Lett. 95 203901

    [10]

    ] Zhang S, Fan W, Minhas B K, Frauenglass A, Malloy K J, Brueck S R J 2005 Phys. Rev. Lett. 95 137404

    [11]

    ] Dolling G, Wegener M, Soukoulis C M, Linden S 2007 Opt. Lett. 32 53

    [12]

    ] Mary A, Rodrigo S G, Garcia-Vidal F J, Martin-Moreno L 2008 Phys. Rev. Lett. 101 103902

    [13]

    ] Tang S W, Zhu W R, Zhao X P 2009 Acta Phys. Sin. 58 3220 (in Chinese) [汤世伟、朱卫仁、赵晓鹏 2009 58 3220]

    [14]

    ] Zhou X, Fu Q H, Zhao J,Yang Y, Zhao X P 2006 Opt. Express 14 7188

    [15]

    ] Zhou X, Zhao X P 2007 Appl. Phys. Lett. 91 181908

    [16]

    ] Zhao X P, Zhao Q, Kang L, Song J, Fu Q H 2005 Phys. Lett. A 346 87

    [17]

    ] Kang L, Zhao Q, Zhao X P 2004 Acta Phys. Sin. 53 3379 (in Chinese) [康雷、赵乾、赵晓鹏 2004 53 3379]

    [18]

    ] Zhao Q, Zhao X P, Kang L, Zhang F L, Liu Y H, Luo C R 2004 Acta Phys. Sin. 53 2206 (in Chinese) [赵乾、赵晓鹏、康雷、张富利、刘亚红、罗春荣 2004 53 2206]

    [19]

    ] Zheng Q, Zhao X P, Li M M, Zhao J 2006 Acta Phys. Sin. 55 6441 (in Chinese) [郑晴、赵晓鹏、李明明、赵晶 2006 55 6441]

    [20]

    ] Liu H, Zhao X P, Yang Y, Li Q W, Lü J 2008 Adv. Mater. 20 2050

    [21]

    ] Liu B Q, Zhao X P, Zhu W R, Luo W, Cheng X C 2008 Adv. Funct. Mater. 18 3523

    [22]

    ] Yang Y, Liu H, Lü J, Zhao X P 2008 J. Funct. Mater. 39 786 (in Chinese) [杨阳、刘辉、吕军、赵晓鹏 2008 功能材料 39 786]

  • [1] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料.  , 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器.  , 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [3] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器.  , 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [4] 崔铁军, 吴浩天, 刘硕. 信息超材料研究进展.  , 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
    [5] 金柯, 刘永强, 韩俊, 杨崇民, 王颖辉, 王慧娜. 基于超材料的中波红外宽带偏振转换研究.  , 2017, 66(13): 134201. doi: 10.7498/aps.66.134201
    [6] 汪肇坤, 杨振宇, 陶欢, 赵茗. 复合结构螺旋超材料对光波前的高效调控.  , 2016, 65(21): 217802. doi: 10.7498/aps.65.217802
    [7] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究.  , 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [8] 孙良奎, 于哲峰, 黄洁. 基于超材料的定向传热结构研究与设计.  , 2015, 64(8): 084401. doi: 10.7498/aps.64.084401
    [9] 孙良奎, 于哲峰, 黄洁. 基于超材料的平板二维定向传热结构设计.  , 2015, 64(22): 224401. doi: 10.7498/aps.64.224401
    [10] 周卓辉, 刘晓来, 黄大庆, 康飞宇. 一种基于十字镂空结构的低频超材料吸波体的设计与制备.  , 2014, 63(18): 184101. doi: 10.7498/aps.63.184101
    [11] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器.  , 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [12] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体.  , 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [13] 刘涛, 曹祥玉, 高军, 郑秋容, 李文强. 基于超材料的吸波体设计及其波导缝隙天线应用.  , 2012, 61(18): 184101. doi: 10.7498/aps.61.184101
    [14] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器.  , 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [15] 苏妍妍, 龚伯仪, 赵晓鹏. 基于双负介质结构单元的零折射率超材料.  , 2012, 61(8): 084102. doi: 10.7498/aps.61.084102
    [16] 钟顺林, 韩满贵, 邓龙江. 超材料微波磁导率色散行为的电可调控性研究.  , 2011, 60(11): 117501. doi: 10.7498/aps.60.117501
    [17] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备.  , 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [18] 赵延, 相建凯, 李飒, 赵晓鹏. 基于双鱼网结构的可见光波段超材料.  , 2011, 60(5): 054211. doi: 10.7498/aps.60.054211
    [19] 闻孺铭, 李凌云, 韩克武, 孙晓玮. 微波超材料隐形结构及其新型快速实验方案.  , 2010, 59(7): 4607-4611. doi: 10.7498/aps.59.4607
    [20] 付非亚, 陈微, 周文君, 刘安金, 邢名欣, 王宇飞, 郑婉华. 纳米三明治结构光子超材料中电磁场振荡行为研究.  , 2010, 59(12): 8579-8583. doi: 10.7498/aps.59.8579
计量
  • 文章访问数:  8926
  • PDF下载量:  1031
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-27
  • 修回日期:  2010-01-07
  • 刊出日期:  2010-03-05

/

返回文章
返回
Baidu
map