搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于方形开口环的超宽带线性极化转换器

徐进 李荣强 蒋小平 王身云 韩天成

引用本文:
Citation:

基于方形开口环的超宽带线性极化转换器

徐进, 李荣强, 蒋小平, 王身云, 韩天成

Ultra-wideband linear polarization converter based on square split ring

Xu Jin, Li Rong-Qiang, Jiang Xiao-Ping, Wang Shen-Yun, Han Tian-Cheng
PDF
HTML
导出引用
  • 电磁波的极化调控在卫星通信、雷达探测以及立体显示成像等领域有重要的应用价值, 探索易于加工、转换效率高、工作频带宽的高性能极化转换器具有重要的研究意义. 本文提出了一种基于方形开口环超构表面的线性极化转换器, 该转换器具有各向异性特点, 反射电场沿两个对角线方向的分量振幅相等, 相位相差180°, 导致在反射模式下能够将入射波的极化方向旋转90°. 实验测试结果表明, 在7.12—18.82 GHz频带范围内极化转换率高于90%, 相对带宽达到90%. 频带的显著拓宽基于四个谐振频点, 每个谐振频点的转换效率都接近100%. 实验结果与模拟结果相符合, 验证了提出的超构表面可以在较宽的频带范围内实现电磁波的90°极化旋转.
    Polarization state of electromagnetic wave has important applications in satellite communication, radar detection, and stereoscopic display imaging. Therefore, the control of polarization state of electromagnetic wave is an important direction in scientific research. The traditional method of manipulating the polarization state is mainly realized based on Faraday effect and birefringent crystal, which has a certain requirement for the material thickness (leading to large volume), and does not have broadband characteristics (leading to narrow band). Recently, metamaterial with subwavelength meta-atoms, has achieved many exotic phenomena and functionalities that cannot be found in nature. As an important branch of metamaterial-based devices, polarization converter has attracted great attention and achieved significant progress. However, most of them cannot realize ultra-broadband, high-efficiency, wide-angle, and simple geometry simultaneously. In this paper, a linear polarization converter based on a square split ring metasurface is proposed. Due to the anisotropic structure, the amplitudes of the reflected electric field along the two diagonal lines are equal, and their phase difference is 180°. As a result, the polarization direction of the incident wave can be rotated 90°. The simulation results show that the polarization conversion ratio (PCR) is higher than 90% in a frequency range from 7.12 to 18.82 GHz, which means that the relative bandwidth reaches 90%. The significant bandwidth expansion is attributed to the four electromagnetic resonances generated in a square-split-ring unit. We investigate the influence of geometric parameters on PCR in detail. We also examine the performance of the proposed structure under oblique incidence. It has little effect on the co-polarization and cross-polarization reflection coefficients when the incident angle is changed from 0° to 45°. Even if the incident angle reaches 45°, the mean PCR remains above 80%. The PCRs of the four electromagnetic resonant points are all close to 100%. Finally, we fabricate and measure the proposed polarization converter that contains $30\times30$ unit cells. The experimental results are in good agreement with the simulation results, and thus validating the design. In conclusion, we propose both theoretically and experimentally a linear polarization converter that possesses ultra-broadband, high-efficiency, wide-angle, and simple geometry simultaneously. The proposed scheme can be extended to terahertz and even optical frequencies.
      通信作者: 韩天成, tchan123@swu.edu.cn
    • 基金项目: 重庆市基础研究与前沿探索项目(批准号: cstc2018jcyjA0572)资助的课题.
      Corresponding author: Han Tian-Cheng, tchan123@swu.edu.cn
    • Funds: Project supported by the Chongqing Research Program of Basic Research and Frontier Technology, China (Grant No. cstc2018jcyjA0572).
    [1]

    Beruete M, Navarro-Cia M, Sorolla M, Campillo I 2008 J. Appl. Phys. 103 053102Google Scholar

    [2]

    Xu J, Li T, Lu F F, Wang S M, Zhu S N 2011 Opt. Express 19 748Google Scholar

    [3]

    Shi H J, Ma H F, Jiang W X, Cui T J 2012 Phys. Rev. B 86 035103Google Scholar

    [4]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788Google Scholar

    [5]

    Lee H, Xiong Y, Fang N, Srituravanich W, Durant S, Ambati M, Sun C, Zhang X 2005 New J. Phys. 7 255Google Scholar

    [6]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [8]

    Ye Y, He S 2010 Appl. Phys. Lett. 96 203501Google Scholar

    [9]

    Menzel C, Helgert C, Rockstuhl C, Kley E B, Tunnermann A, Pertsch T, Lederer F 2010 Phys. Rev. Lett. 104 253902Google Scholar

    [10]

    Shi H, Zhang A, Zheng S, Li J, Jiang Y 2014 Appl. Phys. Lett. 104 034102Google Scholar

    [11]

    Wang S, Liu W, Wen G 2018 Sci. Rep. 8 3791Google Scholar

    [12]

    Hao J, Yuan Y, Ran L, Jiang T, Kong J, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908Google Scholar

    [13]

    Feng M, Wang J, Ma H, Mo W, Ye H, Qu S 2013 J. Appl. Phys. 114 074508Google Scholar

    [14]

    Pu M, Chen P, Wang Y, Zhao Z, Huang C, Wang C, Ma X, Luo X 2013 Appl. Phys. Lett. 102 131906Google Scholar

    [15]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111Google Scholar

    [16]

    Zhang L, Zhou P, Chen H, Lu H, Xie J, Deng L 2015 Appl. Phys. B 120 617Google Scholar

    [17]

    Chen H, Wang J, Ma H, Qu S, Xu Z, Zhang A, Yan M, Li Y 2014 J. Appl. Phys. 115 154504Google Scholar

    [18]

    Ding J, Arigong B, Ren H, Zhou M, Shao J, Lin Y, Zhang H 2014 Opt. Express 22 29143Google Scholar

    [19]

    Shi H, Li J, Zhang A, Wang J, Xu Z 2014 Opt. Express 22 20973Google Scholar

    [20]

    Wen X, Zheng J 2014 Opt. Express 22 28292Google Scholar

    [21]

    范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学 2015 64 184101Google Scholar

    Fan Y, Qu S B, Wang J F, Zhang J Q, Feng M D, Zhang A X 2015 Acta Phys. Sin. 64 184101Google Scholar

    [22]

    Gao X, Han X, Cao W, Li H, Ma H, Cui T 2015 IEEE Trans. Antennas Propag. 63 3522Google Scholar

    [23]

    Zhao J, Cheng Y 2017 Optik 136 52Google Scholar

    [24]

    余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波 2015 64 178101Google Scholar

    Yu J B, Ma H, Wang J F, Feng M D, Li Y F, Qu S B 2015 Acta Phys. Sin. 64 178101Google Scholar

    [25]

    Zhao J, Cheng Y 2016 Appl. Phys. B 122 255

    [26]

    Ding F, Wang Z, He S, Shalaev V M, Kildishev A V 2015 ACS Nano 9 4111Google Scholar

    [27]

    Zhang L, Zhou P, Chen H, Lu H, Xie H, Zhang L, Li E, Xie J, Deng L 2016 Sci. Rep. 6 33826Google Scholar

    [28]

    Zhang L, Zhou P, Lu H, Zhang L, Xie J, Deng L 2016 Opt. Mater. Express 6 1393Google Scholar

    [29]

    Mei Z, Ma X, Lu C, Zhao Y 2017 AIP Adv. 7 125323Google Scholar

    [30]

    方振华, 罗春荣, 赵晓鹏 2017 光子学报 46 1216001

    Fang Z H, Luo C R, Zhao X P 2017 Acta Photon. Sin. 46 1216001

    [31]

    Khan M I, Fraz Q, Tahir F A 2017 J. Appl. Phys. 121 045103Google Scholar

    [32]

    Li S, Cao X, Xu L, Zhou L, Yang H, Han J, Zhang Z, Zhang D, Liu X, Zhang C, Zheng Y, Zhao Y 2016 Sci. Rep. 5 37409

    [33]

    Sui S, Ma H, Wang J, Feng M, Pang Y, Xia S, Xu Z, Qu S 2016 Appl. Phys. Lett. 109 014104Google Scholar

    [34]

    韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 65 044201Google Scholar

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201Google Scholar

    [35]

    Jia Y, Liu Y, Zhang W, Gong S 2016 Appl. Phys. Lett. 109 051901Google Scholar

  • 图 1  基本单元结构示意图 (a) 立体图; (b) 俯视图

    Fig. 1.  Schematic demonstration of the unit cell: (a) 3D view; (b) top view.

    图 2  (a) 极化转换器的工作原理; (b) 反射波沿uv方向的振幅及相位差

    Fig. 2.  (a) The working principle of the proposed polarization converter; (b) amplitudes and phase difference of reflected wave along u and v directions.

    图 3  (a) 交叉极化和共极化反射系数; (b) 极化转换率

    Fig. 3.  (a) Reflection coefficients of cross-polarization and co-polarization; (b) polarization conversion ratio.

    图 4  上下金属表面的电流分布 (a) 7.64 GHz; (b) 16.94 GHz

    Fig. 4.  Distributions of the surface current on the metallic surfaces: (a) 7.64 GHz; (b) 16.94 GHz.

    图 5  (a) 共极化反射谱; (b) 交叉极化反射谱; (c) 平均极化转换效率随入射角的变化

    Fig. 5.  (a) Reflection spectra for co-polarization; (b) reflection spectra for cross-polarization; (c) mean PCR with the change of incident angle.

    图 6  不同的结构参数对极化转换器的性能的影响

    Fig. 6.  Influence of different geometric parameters on the performance of polarization converter.

    图 7  (a) 加工样品与测试系统; (b) rxy测试结果与仿真结果; (c) ryy测试结果与仿真结果

    Fig. 7.  (a) Fabricated sample and measurement system; (b) measured result and simulation result of rxy; (c) measured result and simulation result of ryy.

    表 1  与其他宽带极化转换器的对比

    Table 1.  Comparison with other wideband polarization converters.

    Ref.[17] Ref.[19] Ref.[22] Ref.[25] Ref.[27] This work
    OBa/GHz 10.60—17.50 9.65—14.16 12.40—27.96 5.70—10.30 9.20—19.20 7.12—18.82
    RBb/% 49.0 37.9 77.1 57.5 70.4 90.0
    注: aoperating bandwidth (PCR > 90%), brelative bandwidth (PCR > 90%).
    下载: 导出CSV
    Baidu
  • [1]

    Beruete M, Navarro-Cia M, Sorolla M, Campillo I 2008 J. Appl. Phys. 103 053102Google Scholar

    [2]

    Xu J, Li T, Lu F F, Wang S M, Zhu S N 2011 Opt. Express 19 748Google Scholar

    [3]

    Shi H J, Ma H F, Jiang W X, Cui T J 2012 Phys. Rev. B 86 035103Google Scholar

    [4]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788Google Scholar

    [5]

    Lee H, Xiong Y, Fang N, Srituravanich W, Durant S, Ambati M, Sun C, Zhang X 2005 New J. Phys. 7 255Google Scholar

    [6]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [8]

    Ye Y, He S 2010 Appl. Phys. Lett. 96 203501Google Scholar

    [9]

    Menzel C, Helgert C, Rockstuhl C, Kley E B, Tunnermann A, Pertsch T, Lederer F 2010 Phys. Rev. Lett. 104 253902Google Scholar

    [10]

    Shi H, Zhang A, Zheng S, Li J, Jiang Y 2014 Appl. Phys. Lett. 104 034102Google Scholar

    [11]

    Wang S, Liu W, Wen G 2018 Sci. Rep. 8 3791Google Scholar

    [12]

    Hao J, Yuan Y, Ran L, Jiang T, Kong J, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908Google Scholar

    [13]

    Feng M, Wang J, Ma H, Mo W, Ye H, Qu S 2013 J. Appl. Phys. 114 074508Google Scholar

    [14]

    Pu M, Chen P, Wang Y, Zhao Z, Huang C, Wang C, Ma X, Luo X 2013 Appl. Phys. Lett. 102 131906Google Scholar

    [15]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111Google Scholar

    [16]

    Zhang L, Zhou P, Chen H, Lu H, Xie J, Deng L 2015 Appl. Phys. B 120 617Google Scholar

    [17]

    Chen H, Wang J, Ma H, Qu S, Xu Z, Zhang A, Yan M, Li Y 2014 J. Appl. Phys. 115 154504Google Scholar

    [18]

    Ding J, Arigong B, Ren H, Zhou M, Shao J, Lin Y, Zhang H 2014 Opt. Express 22 29143Google Scholar

    [19]

    Shi H, Li J, Zhang A, Wang J, Xu Z 2014 Opt. Express 22 20973Google Scholar

    [20]

    Wen X, Zheng J 2014 Opt. Express 22 28292Google Scholar

    [21]

    范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学 2015 64 184101Google Scholar

    Fan Y, Qu S B, Wang J F, Zhang J Q, Feng M D, Zhang A X 2015 Acta Phys. Sin. 64 184101Google Scholar

    [22]

    Gao X, Han X, Cao W, Li H, Ma H, Cui T 2015 IEEE Trans. Antennas Propag. 63 3522Google Scholar

    [23]

    Zhao J, Cheng Y 2017 Optik 136 52Google Scholar

    [24]

    余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波 2015 64 178101Google Scholar

    Yu J B, Ma H, Wang J F, Feng M D, Li Y F, Qu S B 2015 Acta Phys. Sin. 64 178101Google Scholar

    [25]

    Zhao J, Cheng Y 2016 Appl. Phys. B 122 255

    [26]

    Ding F, Wang Z, He S, Shalaev V M, Kildishev A V 2015 ACS Nano 9 4111Google Scholar

    [27]

    Zhang L, Zhou P, Chen H, Lu H, Xie H, Zhang L, Li E, Xie J, Deng L 2016 Sci. Rep. 6 33826Google Scholar

    [28]

    Zhang L, Zhou P, Lu H, Zhang L, Xie J, Deng L 2016 Opt. Mater. Express 6 1393Google Scholar

    [29]

    Mei Z, Ma X, Lu C, Zhao Y 2017 AIP Adv. 7 125323Google Scholar

    [30]

    方振华, 罗春荣, 赵晓鹏 2017 光子学报 46 1216001

    Fang Z H, Luo C R, Zhao X P 2017 Acta Photon. Sin. 46 1216001

    [31]

    Khan M I, Fraz Q, Tahir F A 2017 J. Appl. Phys. 121 045103Google Scholar

    [32]

    Li S, Cao X, Xu L, Zhou L, Yang H, Han J, Zhang Z, Zhang D, Liu X, Zhang C, Zheng Y, Zhao Y 2016 Sci. Rep. 5 37409

    [33]

    Sui S, Ma H, Wang J, Feng M, Pang Y, Xia S, Xu Z, Qu S 2016 Appl. Phys. Lett. 109 014104Google Scholar

    [34]

    韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 65 044201Google Scholar

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201Google Scholar

    [35]

    Jia Y, Liu Y, Zhang W, Gong S 2016 Appl. Phys. Lett. 109 051901Google Scholar

  • [1] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体.  , 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [2] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器.  , 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [3] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面.  , 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [4] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面.  , 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [5] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦.  , 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [6] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态.  , 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [7] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面.  , 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [8] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦.  , 2021, (): . doi: 10.7498/aps.70.20211596
    [9] 王明照, 王少杰, 许河秀. 基于剪纸方法的一种可重构线极化转换空间序构超表面.  , 2021, 70(15): 154101. doi: 10.7498/aps.70.20210188
    [10] 蔡成欣, 陈韶赓, 王学梅, 梁俊燕, 王兆宏. 各向异性三维非对称双锥五模超材料的能带结构及品质因数.  , 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [11] 林月钗, 刘仿, 黄翊东. 基于超构材料的Cherenkov辐射.  , 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [12] 杨玖龙, 元晴晨, 陈润丰, 方汉林, 肖发俊, 李俊韬, 姜碧强, 赵建林, 甘雪涛. 硅超构表面上强烈增强的三次谐波.  , 2019, 68(21): 214207. doi: 10.7498/aps.68.20190789
    [13] 曾立, 刘国标, 章海锋, 黄通. 一款基于多物理场调控的超宽带线-圆极化转换器.  , 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [14] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应.  , 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [15] 马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚. 超构天线:原理、器件与应用.  , 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [16] 蒲明博, 王长涛, 王彦钦, 罗先刚. 衍射极限尺度下的亚波长电磁学.  , 2017, 66(14): 144101. doi: 10.7498/aps.66.144101
    [17] 邓俊鸿, 李贵新. 非线性光学超构表面.  , 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [18] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面.  , 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [19] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器.  , 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [20] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质.  , 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
计量
  • 文章访问数:  9715
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-27
  • 修回日期:  2019-03-28
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回
Baidu
map