-
Polarization is one of the basic properties of electromagnetic waves and is valuable in communication, navigation and radar detecting. So it is important to control and manipulate polarization states of electromagnetic waves. In this paper, we design, fabricate and measure a broadband reflective metamaterial 90 polarization rotator which has a double-split-ring resonator (DSRR) structure, composed of two layers of dielectric and a metal plate ground. The explanation of the physical mechanism of the polarization rotator is presented according to the anisotropy media theory. Anisotropic metamaterials can cause a phase or amplitude difference between two crossed polarization waves, which can be used to manipulate the polarization states of the incident waves. The anisotropic polarization rotator behaves different for two orthogonal axes, and the surface current distributions of the DSRR are discussed to analyse the different characteristics of the structure along two orthogonal axes. The DSRR behaves as a dipole resonator that couples with the electric component along one axes and behaves as an LC resonance circuit that couples with the other electric component. Thus, almost an equal magnitude and a 180 phase difference can be generated between the two orthogonal electric components of the reflected waves. The polarization states of the reflected waves will be rotated by 90, when incident waves are polarized by 45 with respect to the symmetric axis of the rotator, and it will be retained when the incident waves are circularly polarized. Simulation results show that this device can work with the relative bandwidth of 90% from 5.5 to 14.5 GHz, of which the polarization conversion ratio is larger than 90%. The polarization conversion ratio will decrease as the incident angle increases, but this high polarization conversion ratio can be obtained at several frequencies. A 576-cell (2424) prototype of the polarization rotator has been fabricated using a printed circuit board method on the FR4 substrates and the experimental results agree well with that of the simulation. The polarization rotator has a simple geometry but more operating frequency bands, compared with the previous designs. It provides a route to broadband polarization rotation and has application values in polarization control, design of new antenna and stealth technology.
-
Keywords:
- polarization rotator /
- broadband /
- metamaterial /
- anisotropy
[1] Li S J, Gao J, Cao X Y, Zhang Z, Zhang D 2014 IEEE Antennas Wireless Propaga. Lett. 13 1413
[2] Li S J, Cao X Y, Gao J, Zheng Q R, Yang H H 2014 Microw. Opt. Technol. Lett. 56 27
[3] Liu Y, Zhang X 2011 Chem. Soc. Rev. 40 2494
[4] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802
[5] Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801
[6] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[7] Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402
[8] Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 62 064103]
[9] Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C 2015 Opt. Express 23 3523
[10] Singh R, Plum E, Zhang W, Zheludev N I 2010 Opt. Express 18 13425
[11] Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 88 165116
[12] Gansel J K, Thiel M, Rill MS, Decker M, Bade K, Saile V, Freymann G V, Linden S, Wegener M 2009 Science 325 18
[13] Ye Y Q, He S L 2010 Appl. Phys. Lett. 96 203501
[14] Chiang Y J, Yen T J 2013 Appl. Phys. Lett. 102 011129
[15] Rajkumar R, Yogesh N, Subramanian V 2013 J. Appl. Phys. 114 224506
[16] Shi H Y, Zhang A X, Zheng S, Li J X, Jiang Y S 2014 Appl. Phys. Lett. 104 034102
[17] Zhu W R, Rukhlenko I D, Xiao F J, Premaratne M 2014 J. Appl. Phys. 115 143101
[18] Zhao J X, Xiao B X, Huang X J, Yang H L 2015 Microw. Opt. Technol. Lett. 57 978
[19] Euler M, Fusco V, Dickie R, Cahill R, Verheggen J 2011 IEEE Trans. Antennas Propag. 59 3103
[20] Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101
[21] Shao J, Li J, Wang Y H, Li J Q, Chen Q, Dong Z G 2014 J. Appl. Phys. 115 243503
[22] Huang X J, Yang D, Yang H L 2014 J. Appl. Phys. 115 103505
[23] Wu L, Yang Z Y, Cheng Y Z, Gong R Z, Zhao M, Zheng Y, Duan J A, Yuan X H 2014 Appl. Phys. A 116 643
[24] Cheng H, Chen S Q, Yu P, Li J X, Xie B Y, Li Z C, Tian J G 2013 Appl. Phys. Lett. 103 223102
[25] Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101
[26] Feng M D, Wang J F, Ma H, Mo W D, Ye H J 2013 J. Appl. Phys. 114 074508
[27] Wen X, Zheng J 2014 Opt. Express 22 28292
[28] Ding J, Arigong B, Ren H, Zhou M, Shao J, Lin Y, Zhang H 2014 Opt. Express 22 29143
[29] Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Opt. Express 22 20973
[30] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbottetc D 2014 Appl. Phys. Lett. 105 181111
[31] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304
[32] Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C, Zhou L 2007 Phys. Rev. Lett. 99 063908
-
[1] Li S J, Gao J, Cao X Y, Zhang Z, Zhang D 2014 IEEE Antennas Wireless Propaga. Lett. 13 1413
[2] Li S J, Cao X Y, Gao J, Zheng Q R, Yang H H 2014 Microw. Opt. Technol. Lett. 56 27
[3] Liu Y, Zhang X 2011 Chem. Soc. Rev. 40 2494
[4] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802
[5] Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801
[6] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[7] Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402
[8] Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 62 064103]
[9] Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C 2015 Opt. Express 23 3523
[10] Singh R, Plum E, Zhang W, Zheludev N I 2010 Opt. Express 18 13425
[11] Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 88 165116
[12] Gansel J K, Thiel M, Rill MS, Decker M, Bade K, Saile V, Freymann G V, Linden S, Wegener M 2009 Science 325 18
[13] Ye Y Q, He S L 2010 Appl. Phys. Lett. 96 203501
[14] Chiang Y J, Yen T J 2013 Appl. Phys. Lett. 102 011129
[15] Rajkumar R, Yogesh N, Subramanian V 2013 J. Appl. Phys. 114 224506
[16] Shi H Y, Zhang A X, Zheng S, Li J X, Jiang Y S 2014 Appl. Phys. Lett. 104 034102
[17] Zhu W R, Rukhlenko I D, Xiao F J, Premaratne M 2014 J. Appl. Phys. 115 143101
[18] Zhao J X, Xiao B X, Huang X J, Yang H L 2015 Microw. Opt. Technol. Lett. 57 978
[19] Euler M, Fusco V, Dickie R, Cahill R, Verheggen J 2011 IEEE Trans. Antennas Propag. 59 3103
[20] Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101
[21] Shao J, Li J, Wang Y H, Li J Q, Chen Q, Dong Z G 2014 J. Appl. Phys. 115 243503
[22] Huang X J, Yang D, Yang H L 2014 J. Appl. Phys. 115 103505
[23] Wu L, Yang Z Y, Cheng Y Z, Gong R Z, Zhao M, Zheng Y, Duan J A, Yuan X H 2014 Appl. Phys. A 116 643
[24] Cheng H, Chen S Q, Yu P, Li J X, Xie B Y, Li Z C, Tian J G 2013 Appl. Phys. Lett. 103 223102
[25] Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101
[26] Feng M D, Wang J F, Ma H, Mo W D, Ye H J 2013 J. Appl. Phys. 114 074508
[27] Wen X, Zheng J 2014 Opt. Express 22 28292
[28] Ding J, Arigong B, Ren H, Zhou M, Shao J, Lin Y, Zhang H 2014 Opt. Express 22 29143
[29] Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Opt. Express 22 20973
[30] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbottetc D 2014 Appl. Phys. Lett. 105 181111
[31] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304
[32] Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C, Zhou L 2007 Phys. Rev. Lett. 99 063908
Catalog
Metrics
- Abstract views: 7738
- PDF Downloads: 407
- Cited By: 0