Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of broadband reflective 90 polarization rotator based on metamaterial

Han Jiang-Feng Cao Xiang-Yu Gao Jun Li Si-Jia Zhang Chen

Citation:

Design of broadband reflective 90 polarization rotator based on metamaterial

Han Jiang-Feng, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Zhang Chen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Polarization is one of the basic properties of electromagnetic waves and is valuable in communication, navigation and radar detecting. So it is important to control and manipulate polarization states of electromagnetic waves. In this paper, we design, fabricate and measure a broadband reflective metamaterial 90 polarization rotator which has a double-split-ring resonator (DSRR) structure, composed of two layers of dielectric and a metal plate ground. The explanation of the physical mechanism of the polarization rotator is presented according to the anisotropy media theory. Anisotropic metamaterials can cause a phase or amplitude difference between two crossed polarization waves, which can be used to manipulate the polarization states of the incident waves. The anisotropic polarization rotator behaves different for two orthogonal axes, and the surface current distributions of the DSRR are discussed to analyse the different characteristics of the structure along two orthogonal axes. The DSRR behaves as a dipole resonator that couples with the electric component along one axes and behaves as an LC resonance circuit that couples with the other electric component. Thus, almost an equal magnitude and a 180 phase difference can be generated between the two orthogonal electric components of the reflected waves. The polarization states of the reflected waves will be rotated by 90, when incident waves are polarized by 45 with respect to the symmetric axis of the rotator, and it will be retained when the incident waves are circularly polarized. Simulation results show that this device can work with the relative bandwidth of 90% from 5.5 to 14.5 GHz, of which the polarization conversion ratio is larger than 90%. The polarization conversion ratio will decrease as the incident angle increases, but this high polarization conversion ratio can be obtained at several frequencies. A 576-cell (2424) prototype of the polarization rotator has been fabricated using a printed circuit board method on the FR4 substrates and the experimental results agree well with that of the simulation. The polarization rotator has a simple geometry but more operating frequency bands, compared with the previous designs. It provides a route to broadband polarization rotation and has application values in polarization control, design of new antenna and stealth technology.
      Corresponding author: Cao Xiang-Yu, xiangyucaokdy@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271100, 61471389, 61501494).
    [1]

    Li S J, Gao J, Cao X Y, Zhang Z, Zhang D 2014 IEEE Antennas Wireless Propaga. Lett. 13 1413

    [2]

    Li S J, Cao X Y, Gao J, Zheng Q R, Yang H H 2014 Microw. Opt. Technol. Lett. 56 27

    [3]

    Liu Y, Zhang X 2011 Chem. Soc. Rev. 40 2494

    [4]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [5]

    Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801

    [6]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [7]

    Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 62 064103]

    [9]

    Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C 2015 Opt. Express 23 3523

    [10]

    Singh R, Plum E, Zhang W, Zheludev N I 2010 Opt. Express 18 13425

    [11]

    Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 88 165116

    [12]

    Gansel J K, Thiel M, Rill MS, Decker M, Bade K, Saile V, Freymann G V, Linden S, Wegener M 2009 Science 325 18

    [13]

    Ye Y Q, He S L 2010 Appl. Phys. Lett. 96 203501

    [14]

    Chiang Y J, Yen T J 2013 Appl. Phys. Lett. 102 011129

    [15]

    Rajkumar R, Yogesh N, Subramanian V 2013 J. Appl. Phys. 114 224506

    [16]

    Shi H Y, Zhang A X, Zheng S, Li J X, Jiang Y S 2014 Appl. Phys. Lett. 104 034102

    [17]

    Zhu W R, Rukhlenko I D, Xiao F J, Premaratne M 2014 J. Appl. Phys. 115 143101

    [18]

    Zhao J X, Xiao B X, Huang X J, Yang H L 2015 Microw. Opt. Technol. Lett. 57 978

    [19]

    Euler M, Fusco V, Dickie R, Cahill R, Verheggen J 2011 IEEE Trans. Antennas Propag. 59 3103

    [20]

    Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101

    [21]

    Shao J, Li J, Wang Y H, Li J Q, Chen Q, Dong Z G 2014 J. Appl. Phys. 115 243503

    [22]

    Huang X J, Yang D, Yang H L 2014 J. Appl. Phys. 115 103505

    [23]

    Wu L, Yang Z Y, Cheng Y Z, Gong R Z, Zhao M, Zheng Y, Duan J A, Yuan X H 2014 Appl. Phys. A 116 643

    [24]

    Cheng H, Chen S Q, Yu P, Li J X, Xie B Y, Li Z C, Tian J G 2013 Appl. Phys. Lett. 103 223102

    [25]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101

    [26]

    Feng M D, Wang J F, Ma H, Mo W D, Ye H J 2013 J. Appl. Phys. 114 074508

    [27]

    Wen X, Zheng J 2014 Opt. Express 22 28292

    [28]

    Ding J, Arigong B, Ren H, Zhou M, Shao J, Lin Y, Zhang H 2014 Opt. Express 22 29143

    [29]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Opt. Express 22 20973

    [30]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbottetc D 2014 Appl. Phys. Lett. 105 181111

    [31]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [32]

    Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C, Zhou L 2007 Phys. Rev. Lett. 99 063908

  • [1]

    Li S J, Gao J, Cao X Y, Zhang Z, Zhang D 2014 IEEE Antennas Wireless Propaga. Lett. 13 1413

    [2]

    Li S J, Cao X Y, Gao J, Zheng Q R, Yang H H 2014 Microw. Opt. Technol. Lett. 56 27

    [3]

    Liu Y, Zhang X 2011 Chem. Soc. Rev. 40 2494

    [4]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [5]

    Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801

    [6]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [7]

    Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 62 064103]

    [9]

    Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C 2015 Opt. Express 23 3523

    [10]

    Singh R, Plum E, Zhang W, Zheludev N I 2010 Opt. Express 18 13425

    [11]

    Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 88 165116

    [12]

    Gansel J K, Thiel M, Rill MS, Decker M, Bade K, Saile V, Freymann G V, Linden S, Wegener M 2009 Science 325 18

    [13]

    Ye Y Q, He S L 2010 Appl. Phys. Lett. 96 203501

    [14]

    Chiang Y J, Yen T J 2013 Appl. Phys. Lett. 102 011129

    [15]

    Rajkumar R, Yogesh N, Subramanian V 2013 J. Appl. Phys. 114 224506

    [16]

    Shi H Y, Zhang A X, Zheng S, Li J X, Jiang Y S 2014 Appl. Phys. Lett. 104 034102

    [17]

    Zhu W R, Rukhlenko I D, Xiao F J, Premaratne M 2014 J. Appl. Phys. 115 143101

    [18]

    Zhao J X, Xiao B X, Huang X J, Yang H L 2015 Microw. Opt. Technol. Lett. 57 978

    [19]

    Euler M, Fusco V, Dickie R, Cahill R, Verheggen J 2011 IEEE Trans. Antennas Propag. 59 3103

    [20]

    Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101

    [21]

    Shao J, Li J, Wang Y H, Li J Q, Chen Q, Dong Z G 2014 J. Appl. Phys. 115 243503

    [22]

    Huang X J, Yang D, Yang H L 2014 J. Appl. Phys. 115 103505

    [23]

    Wu L, Yang Z Y, Cheng Y Z, Gong R Z, Zhao M, Zheng Y, Duan J A, Yuan X H 2014 Appl. Phys. A 116 643

    [24]

    Cheng H, Chen S Q, Yu P, Li J X, Xie B Y, Li Z C, Tian J G 2013 Appl. Phys. Lett. 103 223102

    [25]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101

    [26]

    Feng M D, Wang J F, Ma H, Mo W D, Ye H J 2013 J. Appl. Phys. 114 074508

    [27]

    Wen X, Zheng J 2014 Opt. Express 22 28292

    [28]

    Ding J, Arigong B, Ren H, Zhou M, Shao J, Lin Y, Zhang H 2014 Opt. Express 22 29143

    [29]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Opt. Express 22 20973

    [30]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbottetc D 2014 Appl. Phys. Lett. 105 181111

    [31]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [32]

    Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C, Zhou L 2007 Phys. Rev. Lett. 99 063908

  • [1] Qian Li-Ming, Sun Meng-Ran, Zheng Gai-Ge. Coupling interactions of anisotropic hyperbolic phonon polaritons in double layered orthorhombic molybdenum trioxide. Acta Physica Sinica, 2023, 72(7): 077101. doi: 10.7498/aps.72.20222144
    [2] Wang Jing-Li, Yang Zhi-Xiong, Dong Xian-Chao, Yin Liang, Wan Hong-Dan, Chen He-Ming, Zhong Kai. VO2 based terahertz anisotropic coding metasurface. Acta Physica Sinica, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [3] Gao Xi, Tang Li-Guang. Wideband and high efficiency orbital angular momentum generator based on bi-layer metasurface. Acta Physica Sinica, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [4] Cai Cheng-Xin, Chen Shao-Geng, Wang Xue-Mei, Liang Jun-Yan, Wang Zhao-Hong. Phononic band structure and figure of merit of three-dimensional anisotropic asymmetric double-cone pentamode metamaterials. Acta Physica Sinica, 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [5] Gao Qiang, Wang Xiao-Hua, Wang Bing-Zhong. Far-field super-resolution imaging based on wideband stereo-metalens. Acta Physica Sinica, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [6] Ning Ren-Xia, Bao Jie, Jiao Zheng. Wide band electromagnetically induced transparency in graphene metasurface of composite structure. Acta Physica Sinica, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [7] Jin Ke, Liu Yong-Qiang, Han Jun, Yang Chong-Min, Wang Ying-Hui, Wang Hui-Na. Middle-wave infrared and broadband polarization conversion based on metamaterial. Acta Physica Sinica, 2017, 66(13): 134201. doi: 10.7498/aps.66.134201
    [8] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng, Niu Xue-Bin, Liu Ya-Qiao. Broadband circularly polarized high-gain antenna design based on linear-to-circular polarization conversion focusing metasurface. Acta Physica Sinica, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [9] Hou Hai-Sheng, Wang Guang-Ming, Li Hai-Peng, Cai Tong, Guo Wen-Long. Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna. Acta Physica Sinica, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [10] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng. Broadband circularly polarized high-gain antenna design based on single-layer reflecting metasurface. Acta Physica Sinica, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [11] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Design and verification of a two-dimensional wide band phase-gradient metasurface. Acta Physica Sinica, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [12] Guo Fei, Du Hong-Liang, Qu Shao-Bo, Xia Song, Xu Zhuo, Zhao Jian-Feng, Zhang Hong-Mei. Design and fabrication of a broadband metamaterial absorber based on a dielectric and magnetic hybrid substrate. Acta Physica Sinica, 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [13] Lu Lei, Qu Shao-Bo, Shi Hong-Yu, Zhang An-Xue, Xia Song, Xu Zhuo, Zhang Jie-Qiu. A broadband transmission absorption polarization-independent metamaterial absorber. Acta Physica Sinica, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [14] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Li Si-Jia, Zhao Yi, Yuan Zi-Dong, Zhang Hao. Broadband low-RCS metamaterial absorber based on electromagnetic resonance separation. Acta Physica Sinica, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [15] Wang Ying, Cheng Yong-Zhi, Nie Yan, Gong Rong-Zhou. Design and experiments of low-frequency broadband metamaterial absorber based on lumped elements. Acta Physica Sinica, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [16] Zhang Li-Wei, Zhao Yu-Huan, Wang Qin, Fang Kai, Li Wei-Bin, Qiao Wen-Tao. Resonance properties of surface plasmon in the anisotropic metamaterial waveguide. Acta Physica Sinica, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [17] Zhang Qing-Bin, Lan Peng-Fei, Hong Wei-Yi, Liao Qing, Yang Zhen-Yu, Lu Pei-Xiang. The effect of controlling laser field on broadband suppercontinuum generation. Acta Physica Sinica, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
    [18] Zhou Jian-Hua, Liu Hong-Yao, Luo Hai-Lu, Wen Shuang-Chun. Backward wave propagation in anisotropic metamaterials. Acta Physica Sinica, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [19] Zhuang Fei, Shen Jian-Qi. Investigation of photon geometric phases inside a curved fiber made of biaxially anisotropic left-handed media. Acta Physica Sinica, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
    [20] Li An-Hua, Dong Sheng-Zhi, Li Wei. . Acta Physica Sinica, 2002, 51(10): 2320-2324. doi: 10.7498/aps.51.2320
Metrics
  • Abstract views:  7738
  • PDF Downloads:  407
  • Cited By: 0
Publishing process
  • Received Date:  31 July 2015
  • Accepted Date:  03 November 2015
  • Published Online:  05 February 2016

/

返回文章
返回
Baidu
map