搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸收波长和吸收效率可控的超材料吸收器

江孝伟 武华

引用本文:
Citation:

吸收波长和吸收效率可控的超材料吸收器

江孝伟, 武华

Metamaterial absorber with controllable absorption wavelength and absorption efficiency

Jiang Xiao-Wei, Wu Hua
PDF
HTML
导出引用
  • 为了使超材料完美吸收器(metamaterial perfect absorber, MPA)能够同时实现吸收效率和吸收波长的控制, 本文提出利用二氧化钒(VO2)和石墨烯作为MPA的材料, 通过对MPA的结构设计, 在红外波段实现了高吸收, 吸收效率最高可达99%. 研究发现通过改变VO2的温度和石墨烯的化学势, 可同时实现MPA吸收效率和吸收波长的控制, 吸收效率调制深度和吸收波长调谐范围分别可达97.08%和3.2 μm. 通过对MPA在吸收波长处的磁场分布分析可以得出, MPA能够产生高吸收是由于其形成了法布里-帕罗(Fabry-Pérot, FP) 干涉腔共振, 研究发现MPA的结构参数对FP腔的共振波长具有显著的影响.
    The metamaterial perfect absorber (MPA) is a new type of electromagnetic wave absorber first proposed by Landy. Compared with the traditional electromagnetic wave absorber, MPA has many advantages, including ultra-high absorption efficiency, ultra-thin, compact structure, easily tunable resonances, etc. so it is gradually applied to ultra-sensitive sensing, imaging, detection and other fields. Nowadays, the MPA research focuses on two areas. One area focuses on the absorption efficiency modulation and absorption wavelength tuning, and the other area is to broaden the absorption bandwidth and achieve high absorptions at different optical frequencies. Previously, the MPA absorption efficiency modulation or absorption wavelength tuning was realized by changing the device structure or the surrounding medium material. But these methods can increase the difficulty in processing and increase the device volume. In order to achieve the control of absorption wavelength and absorption efficiency without increasing the difficulty in processing or the device volume. We propose to use vanadium dioxide and graphene as the materials of MPA, which has high absorption efficiency in the infrared band. It is found that the absorption efficiency of MPA at 9.66 μm wavelength can reach 96% when the temperature of vanadium dioxide is 5 ℃ by using finite difference time domain (FDTD) method. However, when the vanadium dioxide temperature rises to 68 ℃, the absorption efficiency of MPA suddenly drops to 2.8%. The modulation depth of absorption efficiency can reach 97.08%. We propose that the MPA be able to control not only the absorption efficiency, but also the absorption wavelength. By changing the voltage of graphene, the chemical potential Ef of graphene can be controlled and the absorption wavelength of MPA can be tuned. When Ef increases from 0.1 eV to 3 eV, the absorption wavelength of MPA will be blue-shifted from 9.66 μm to 6.46 μm. The magnetic field distribution of MPA at the absorption wavelength shows that the MPA has a high absorption efficiency because of the Fabry-Pérot (FP) cavity resonance is formed in MPA. Therefore, the change of structure parameters of MPA will affect its absorption characteristics. It is found by the FDTD method that the absorption wavelength of MPA will be redshifted, when the radius, thickness, period and thickness of the nanocolumn array increase. This study can provide theoretical guidance for designing and preparing the controllable MPA, which has compact structure and low process difficulty merits.
      通信作者: 武华, wh1125@126.com
    • 基金项目: 国家自然科学基金(批准号: 61575008, 61650404)、江西省自然科学基金(批准号: 20171BAB202037)、江西省教育厅科技项目(批准号: GJJ170819)和衢州市科技计划项目(批准号: 2019K20)资助的课题
      Corresponding author: Wu Hua, wh1125@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575008, 61650404), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20171BAB202037), the Technology Project of Jiangxi Provincial Education Department, China (Grant No. GJJ170819), and the Quzhou Science and Technology Project, China (Grant No. 2019K20)
    [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [2]

    Liu X L, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403Google Scholar

    [3]

    Lei L, Li S, Hang H X, Tao K Y, Xu P 2018 Opt. Express 8 1031Google Scholar

    [4]

    Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li K F 2015 Nat. Commun. 6 8241Google Scholar

    [5]

    Chen L, Liao D G, Guo X G 2019 Front. Inform. Technol. Electron. Eng. 20 591Google Scholar

    [6]

    Bian B, Liu S, Wang S 2013 J. Appl. Phys. 114 194511Google Scholar

    [7]

    Yin S, Zhu J F, Xu W D, Jiang W, Yuan J, Yin G 2015 Appl. Phys. Lett. 107 073903Google Scholar

    [8]

    Xiao Z, Tang J 2017 Mater. Lett. 192 21Google Scholar

    [9]

    Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403Google Scholar

    [10]

    Ling K, Kim H K, Yoo M, Lim S 2015 Sensors (Basel) 15 28154Google Scholar

    [11]

    Liu M K, Susli M, Silva D, Putrino G, Kala H, Fan S T, Cole M 2017 Microsyst. Nanoeng. 3 17033Google Scholar

    [12]

    Hashemi M R M, Yang S H, Wang T 2016 Sci. Rep. 6 35439Google Scholar

    [13]

    Pradhan J K, Ramakrishna S A, Rajeswaran B 2017 Opt. Express 25 9116Google Scholar

    [14]

    Naorem R, Dayal G, Anantha Ramakrishna S 2015 Opt. Commun. 346 154Google Scholar

    [15]

    Liu Z M, Li Y 2017 J. Phys. D Appl. Phys. 50 38

    [16]

    陈浩, 张晓霞, 王鸿, 姬月华 2018 67 118101Google Scholar

    Chen H, Zhang X X, Wang H, Ji Y H 2018 Acta Phys. Sin. 67 118101Google Scholar

    [17]

    李小兵, 陆卫兵, 刘震国, 陈昊 2018 67 184101Google Scholar

    Li X B, Lu W B, Liu Z G, Chen H 2018 Acta Phys. Sin. 67 184101Google Scholar

    [18]

    Yao G, Ling F, Yue J 2016 Opt. Express 24 1518Google Scholar

    [19]

    Fan C Z, Tian Y C, Ren P W 2019 Chin. Phys. B 28 076105Google Scholar

    [20]

    Ding C F, Jiang L K, Wu L, Gao R M 2015 Opt. Commun. 350 103Google Scholar

    [21]

    Lee K, Choi H J, Son J 2015 Sci. Rep. 5 14403Google Scholar

    [22]

    杨海波, 胡明, 梁继然 2008 物理化学学报 6 101

    Yang L B, Hu M, Liang J R 2008 Acta Phys.-Chim. Sin. 6 101

    [23]

    Kischkat J, Peters S, Gruska B 2012 Appl. Optics 51 6789Google Scholar

    [24]

    Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679Google Scholar

    [25]

    江孝伟, 武华, 袁寿财 2019 68 138101Google Scholar

    Jiang X W, Wu H, Yuan S C 2019 Acta Phys. Sin. 68 138101Google Scholar

    [26]

    张会云, 黄晓燕, 陈琦 2016 65 18101Google Scholar

    Zhang H Y, Huang X Y, Chen Q 2016 Acta Phys. Sin. 65 18101Google Scholar

    [27]

    Lu H, Cumming B P, Gu M 2015 Opt. Lett. 40 3647Google Scholar

    [28]

    乔文涛, 龚健, 张利伟 2015 64 237301Google Scholar

    Qiao W T, Gong J, Zhang L W 2015 Acta Phys. Sin. 64 237301Google Scholar

    [29]

    Vasko F T, Ryzhii V 2007 Phys. Rev. B 76 233404Google Scholar

    [30]

    Mun B S, Yoon J, Mo S K 2013 Appl. Phys. Lett. 103 1039Google Scholar

    [31]

    Currie M, Mastro M A, Wheeler V D 2017 Opt. Mater. Express 7 1697Google Scholar

    [32]

    Yao Y, Kats M A, Genevet P, Yu N, Song Y 2013 Nano Lett. 13 1257Google Scholar

    [33]

    Vakil A, Engheta N 2011 Science 332 1291Google Scholar

  • 图 1  吸收特性可控的MPA结构图

    Fig. 1.  MPA structure diagram with controllable absorption characteristics.

    图 2  VO2不同温度下MPA的吸收效率

    Fig. 2.  Absorption efficiency of MPA at different temperature of VO2.

    图 3  VO2不同温度下MPA磁场分布 (a) TV = 5 ℃; (b) TV = 68 ℃

    Fig. 3.  Magnetic field distribution of MPA at different temperature of VO2: (a) TV = 5 ℃; (b) TV = 68 ℃.

    图 4  温度对VO2折射率和消光系数的影响 (a) 折射率n; (b)消光系数k

    Fig. 4.  The influence of temperature on the refractive index and the extinction coefficient of VO2: (a) Refractive index n; (b) extinction coefficient k.

    图 5  石墨烯化学势对MPA吸收波长的影响

    Fig. 5.  The effect of graphene chemical potential on the absorption wavelength of MPA.

    图 6  石墨烯化学势对石墨烯等效折射率的影响

    Fig. 6.  The effect of graphene chemical potential on the equivalent refractive index of graphene.

    图 7  纳米柱半径对MPA吸收特性的影响

    Fig. 7.  The influence of nano column radius on the absorption characteristics of MPA.

    图 8  纳米柱半径对MPA结构等效折射率nq的影响

    Fig. 8.  The influence of nano column radius on the equivalent refractive nq of MPA.

    图 9  纳米柱厚度对MPA吸收特性的影响

    Fig. 9.  The influence of nano column thickness on the absorption characteristics of MPA.

    图 10  VO2厚度对MPA吸收特性的影响

    Fig. 10.  The influence of VO2 thickness on the absorption characteristics of MPA.

    Baidu
  • [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [2]

    Liu X L, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403Google Scholar

    [3]

    Lei L, Li S, Hang H X, Tao K Y, Xu P 2018 Opt. Express 8 1031Google Scholar

    [4]

    Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li K F 2015 Nat. Commun. 6 8241Google Scholar

    [5]

    Chen L, Liao D G, Guo X G 2019 Front. Inform. Technol. Electron. Eng. 20 591Google Scholar

    [6]

    Bian B, Liu S, Wang S 2013 J. Appl. Phys. 114 194511Google Scholar

    [7]

    Yin S, Zhu J F, Xu W D, Jiang W, Yuan J, Yin G 2015 Appl. Phys. Lett. 107 073903Google Scholar

    [8]

    Xiao Z, Tang J 2017 Mater. Lett. 192 21Google Scholar

    [9]

    Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403Google Scholar

    [10]

    Ling K, Kim H K, Yoo M, Lim S 2015 Sensors (Basel) 15 28154Google Scholar

    [11]

    Liu M K, Susli M, Silva D, Putrino G, Kala H, Fan S T, Cole M 2017 Microsyst. Nanoeng. 3 17033Google Scholar

    [12]

    Hashemi M R M, Yang S H, Wang T 2016 Sci. Rep. 6 35439Google Scholar

    [13]

    Pradhan J K, Ramakrishna S A, Rajeswaran B 2017 Opt. Express 25 9116Google Scholar

    [14]

    Naorem R, Dayal G, Anantha Ramakrishna S 2015 Opt. Commun. 346 154Google Scholar

    [15]

    Liu Z M, Li Y 2017 J. Phys. D Appl. Phys. 50 38

    [16]

    陈浩, 张晓霞, 王鸿, 姬月华 2018 67 118101Google Scholar

    Chen H, Zhang X X, Wang H, Ji Y H 2018 Acta Phys. Sin. 67 118101Google Scholar

    [17]

    李小兵, 陆卫兵, 刘震国, 陈昊 2018 67 184101Google Scholar

    Li X B, Lu W B, Liu Z G, Chen H 2018 Acta Phys. Sin. 67 184101Google Scholar

    [18]

    Yao G, Ling F, Yue J 2016 Opt. Express 24 1518Google Scholar

    [19]

    Fan C Z, Tian Y C, Ren P W 2019 Chin. Phys. B 28 076105Google Scholar

    [20]

    Ding C F, Jiang L K, Wu L, Gao R M 2015 Opt. Commun. 350 103Google Scholar

    [21]

    Lee K, Choi H J, Son J 2015 Sci. Rep. 5 14403Google Scholar

    [22]

    杨海波, 胡明, 梁继然 2008 物理化学学报 6 101

    Yang L B, Hu M, Liang J R 2008 Acta Phys.-Chim. Sin. 6 101

    [23]

    Kischkat J, Peters S, Gruska B 2012 Appl. Optics 51 6789Google Scholar

    [24]

    Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679Google Scholar

    [25]

    江孝伟, 武华, 袁寿财 2019 68 138101Google Scholar

    Jiang X W, Wu H, Yuan S C 2019 Acta Phys. Sin. 68 138101Google Scholar

    [26]

    张会云, 黄晓燕, 陈琦 2016 65 18101Google Scholar

    Zhang H Y, Huang X Y, Chen Q 2016 Acta Phys. Sin. 65 18101Google Scholar

    [27]

    Lu H, Cumming B P, Gu M 2015 Opt. Lett. 40 3647Google Scholar

    [28]

    乔文涛, 龚健, 张利伟 2015 64 237301Google Scholar

    Qiao W T, Gong J, Zhang L W 2015 Acta Phys. Sin. 64 237301Google Scholar

    [29]

    Vasko F T, Ryzhii V 2007 Phys. Rev. B 76 233404Google Scholar

    [30]

    Mun B S, Yoon J, Mo S K 2013 Appl. Phys. Lett. 103 1039Google Scholar

    [31]

    Currie M, Mastro M A, Wheeler V D 2017 Opt. Mater. Express 7 1697Google Scholar

    [32]

    Yao Y, Kats M A, Genevet P, Yu N, Song Y 2013 Nano Lett. 13 1257Google Scholar

    [33]

    Vakil A, Engheta N 2011 Science 332 1291Google Scholar

  • [1] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展.  , 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [2] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面.  , 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [3] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料.  , 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [4] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器.  , 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [5] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9′-二亚呫吨分子吸附行为和石墨烯摩尔超结构.  , 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [6] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9'-二亚呫吨分子吸附行为和石墨烯摩尔超结构研究.  , 2022, 0(0): . doi: 10.7498/aps.7120221057
    [7] 王波, 张纪红, 李聪颖. 石墨烯增强半导体态二氧化钒近场热辐射.  , 2021, 70(5): 054207. doi: 10.7498/aps.70.20201360
    [8] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面.  , 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [9] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器.  , 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [10] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展.  , 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [11] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器.  , 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [12] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计.  , 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [13] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体.  , 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [14] 卢晓波, 张广宇. 石墨烯莫尔超晶格.  , 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [15] 孙良奎, 于哲峰, 黄洁. 基于超材料的平板二维定向传热结构设计.  , 2015, 64(22): 224401. doi: 10.7498/aps.64.224401
    [16] 马岩冰, 张怀武, 李元勋. 基于科赫分形的新型超材料双频吸收器.  , 2014, 63(11): 118102. doi: 10.7498/aps.63.118102
    [17] 韩松, 杨河林. 双向多频超材料吸波器的设计与实验研究.  , 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [18] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器.  , 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [19] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器.  , 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [20] 樊京, 蔡广宇. 一种基于金属开口谐振环和杆阵列的左手材料宽带吸收器.  , 2010, 59(9): 6084-6088. doi: 10.7498/aps.59.6084
计量
  • 文章访问数:  9098
  • PDF下载量:  268
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-22
  • 修回日期:  2020-09-17
  • 上网日期:  2021-01-09
  • 刊出日期:  2021-01-20

/

返回文章
返回
Baidu
map