-
Filter is the core communication device in optical integrated chip. In recent years, plasma-induced transparency in surface plasmon (SPP) subwavelength waveguide photonic deviceshas become a research hotspot in the field of nano optics. The plasmon-induced transparency (PIT) is a phenomenon that the original absorption region produces a sharp transparent window due to the interaction among different resonant modes of SPPs, therefore, a higher resolution and quality factor surface plasmons can be obtained by using this feature to design a metal-medium-metal (MIM) waveguide structure filter. However, due to the Ohmic loss caused by metal parts, further research is needed on how to effectively improve transmission efficiency and achieve better frequency selection and filtering effect while reducing filter bandwidth in MIM waveguide filter. Based on the transmission and coupling characteristics of SPPs, an MIM waveguide filter with semi-closed T-waveguide side coupled disc cavity is proposed.Its transmission characteristics are studied by using the finite element method. The results show that a narrow-band transmission peak based on plasma-induced transparency appears in the transmission spectrum. Through theoretical analysis and mode field distribution, the physical mechanism of generating the PIT transparent peak and valley values on both sides is effectively explained. Compared with the traditional straight waveguide structure, the curved waveguide structure can generate the bilateral coupling effect, which can make resonant interaction stronger. Meanwhile, the numerical study shows that the approximately linear adjustment of filter wavelength can be achieved by changing the length of branches, the radius of the disk cavity and the refractive index of the medium in the cavity through external modulation. Further, the gain medium is embedded in the disk cavity, which enhances its local ability to emit light, strengthens the mode resonance effect, and realizes the compression filter pass-band bandwidth while effectively improving the structural transmittance, compared with similar filters. The research results provide an effective theoretical reference for designing the high resolution narrowband filter.
-
Keywords:
- surface plasmon polaritons /
- plasmonic-induced transparency /
- gain medium /
- filter
[1] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar
[2] Ozbay E 2006 Science 311 189Google Scholar
[3] Jun Z, Xu W J, Xu Z J, Fu D L, Song S X, Wei D Q 2017 Optik 134 187Google Scholar
[4] Chen Y, Luo P, Zhao Z Y, He L, Cui X N 2017 Phys. Lett. A 381 3472Google Scholar
[5] Liu Y, Zhou F, Yao B, Cao J, Mao Q H 2013 Plasmonics 8 1035Google Scholar
[6] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤 2018 67 197301Google Scholar
Qi Y P, Zhang X W, Zhou P Y, Hu B B, Wang X Y 2018 Acta Phys. Sin. 67 197301Google Scholar
[7] Zhang X Y, Hu A, Wen J Z, Zhang T, Xue X J, Zhou Y, Duley WW 2010 Opt. Express 18 18945Google Scholar
[8] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月 2012 61 187301Google Scholar
Zhang Z D, Zhao Y N, Lu D, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 187301Google Scholar
[9] Tao J, Huang X G, Lin X S, Chen J H, Zhang Q, Jin X P 2010 J. Opt. Soc. Am. 27 323Google Scholar
[10] Yun B F, Hu G H, Cui Y P 2013 Plasmonics 8 267Google Scholar
[11] Wang T B, Wen X W, Yin C P, Wang H Z 2009 Opt. Express 17 24096Google Scholar
[12] Mei X, Huang X, Tao J, Zhu J H, Zhu Y J, Jin X P 2010 J. Opt. Soc. Am. B 27 2707Google Scholar
[13] Wang L, Li W, Jiang X 2015 Opt. Lett. 40 2325Google Scholar
[14] Chen J, Wang C, Zhang R, Xiao J 2012 Opt. Lett. 37 5133Google Scholar
[15] 杨韵茹, 关建飞 2016 65 057301Google Scholar
Yang Y R, Guan J F 2016 Acta Phys. Sin. 65 057301Google Scholar
[16] Kim K Y, Cho Y K, Tae H S, Lee J H 2006 Opt. Express 14 320Google Scholar
[17] Haus H A 1984 Waves and Fields in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall) pp56–59
[18] Chremmos I 2009 J. Opt. Soc. Am. 26 2623Google Scholar
[19] Zhang Q, Huang X G, Lin X S, Tao J, Jin X P 2009 Opt. Express 17 7549Google Scholar
[20] Vlasov Y A, O'Boyle M, Hamann H F, McNab S J 2005 Nature 438 65Google Scholar
[21] Nezhad M, Tetz K, Fainman Y 2004 Opt. Express 12 4072Google Scholar
[22] Chen X, Bhola B, Huang Y, Ho S T 2010 Opt. Express 18 17220
[23] Babicheva V E, Kulkova I V, Malureanu R, Yvind K, Lavrinenko A V 2010 Phys. Opt. 10 389
[24] Yu Z, Veronis G, Fan S 2008 Appl. Phys. Lett. 92 041117Google Scholar
-
图 4 结构参数对滤波特性的影响 (a)不同L3和r时滤波器的透射谱; (b)不同g时的透射谱; (c)透射峰共振波长与L3和r的关系; (d)不同共振波长处L3和r的关系
Figure 4. Influence of parameters on filter characteristics: (a) Transmission spectra of the filter for different parameters of L3 and r; (b) for different parameters of g; (c) relationship between resonance wavelength and L3 and r; (d) relation curves of L3 and r for different resonance peaks.
-
[1] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar
[2] Ozbay E 2006 Science 311 189Google Scholar
[3] Jun Z, Xu W J, Xu Z J, Fu D L, Song S X, Wei D Q 2017 Optik 134 187Google Scholar
[4] Chen Y, Luo P, Zhao Z Y, He L, Cui X N 2017 Phys. Lett. A 381 3472Google Scholar
[5] Liu Y, Zhou F, Yao B, Cao J, Mao Q H 2013 Plasmonics 8 1035Google Scholar
[6] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤 2018 67 197301Google Scholar
Qi Y P, Zhang X W, Zhou P Y, Hu B B, Wang X Y 2018 Acta Phys. Sin. 67 197301Google Scholar
[7] Zhang X Y, Hu A, Wen J Z, Zhang T, Xue X J, Zhou Y, Duley WW 2010 Opt. Express 18 18945Google Scholar
[8] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月 2012 61 187301Google Scholar
Zhang Z D, Zhao Y N, Lu D, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 187301Google Scholar
[9] Tao J, Huang X G, Lin X S, Chen J H, Zhang Q, Jin X P 2010 J. Opt. Soc. Am. 27 323Google Scholar
[10] Yun B F, Hu G H, Cui Y P 2013 Plasmonics 8 267Google Scholar
[11] Wang T B, Wen X W, Yin C P, Wang H Z 2009 Opt. Express 17 24096Google Scholar
[12] Mei X, Huang X, Tao J, Zhu J H, Zhu Y J, Jin X P 2010 J. Opt. Soc. Am. B 27 2707Google Scholar
[13] Wang L, Li W, Jiang X 2015 Opt. Lett. 40 2325Google Scholar
[14] Chen J, Wang C, Zhang R, Xiao J 2012 Opt. Lett. 37 5133Google Scholar
[15] 杨韵茹, 关建飞 2016 65 057301Google Scholar
Yang Y R, Guan J F 2016 Acta Phys. Sin. 65 057301Google Scholar
[16] Kim K Y, Cho Y K, Tae H S, Lee J H 2006 Opt. Express 14 320Google Scholar
[17] Haus H A 1984 Waves and Fields in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall) pp56–59
[18] Chremmos I 2009 J. Opt. Soc. Am. 26 2623Google Scholar
[19] Zhang Q, Huang X G, Lin X S, Tao J, Jin X P 2009 Opt. Express 17 7549Google Scholar
[20] Vlasov Y A, O'Boyle M, Hamann H F, McNab S J 2005 Nature 438 65Google Scholar
[21] Nezhad M, Tetz K, Fainman Y 2004 Opt. Express 12 4072Google Scholar
[22] Chen X, Bhola B, Huang Y, Ho S T 2010 Opt. Express 18 17220
[23] Babicheva V E, Kulkova I V, Malureanu R, Yvind K, Lavrinenko A V 2010 Phys. Opt. 10 389
[24] Yu Z, Veronis G, Fan S 2008 Appl. Phys. Lett. 92 041117Google Scholar
Catalog
Metrics
- Abstract views: 8396
- PDF Downloads: 86
- Cited By: 0