Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of two-dimensional BeB2 monolayer as anode material for magnesium ion batteries

Li Xin-Yue Gao Guo-Xiang Gao Qiang Liu Chun-Sheng Ye Xiao-Juan

Citation:

Theoretical study of two-dimensional BeB2 monolayer as anode material for magnesium ion batteries

Li Xin-Yue, Gao Guo-Xiang, Gao Qiang, Liu Chun-Sheng, Ye Xiao-Juan
PDF
HTML
Get Citation
  • Rechargeable lithium-ion batteries as the main energy storage equipment should possess high power density, excellent reversible capacity, and long cycle life. However, due to the high cost and dendrite growth of Li, searching for non-Li-ion batteries is urgent. Compared with lithium, magnesium has abundant resources, small ionic radius, and high energy density. Therefore, magnesium-ion batteries (MIBs) can serve as the next generation metal-ion batteries. Two-dimensional materials based on Be or B element acting as the anode of metal-ion batteries always exhibit high theoretical storage capacity. Using first-principles calculations, we systematically explore the potential of BeB2 as MIBs anode. The optimized BeB2 monolayer structure shown in Fig. (a) consists of two atomic layers, where each Be atom is coordinated with six B atoms, and each B atom is coordinated with three Be atoms.The lattice constants are a = b = 3.037 Å with a thickness of 0.554 Å. From the phonon spectrum calculations, the absence of imaginary modes indicates the dynamic stability of BeB2 monolayer. The presence of a Dirac cone further suggests the excellent conductivity (Fig.(b)). Three stable adsorption sites (Be1: top of Be atoms; Be2 and B2: bottom of Be and B atoms) are labeled in Fig. (a). Taking symmetry into account, we consider three pathways to evaluate the migration of Mg atom on BeB2 monolayer (Fig.(c)). The corresponding lowest diffusion energy barrier is 0.04 eV along Path III. The stable configuration with the maximum adsorption Mg concentration is shown in Fig.(d), which generates a theoretical capacity of 5250 mA·h·g–1. The calculated average open-circuit voltage is 0.33 V. Based on ab initio molecular dynamics simulations, the total energy of BeB2, with Mg adsorbed, fluctuates within a narrow range, suggesting that BeB2 can sustain structural stability after storing Mg at room temperature (Fig.(e)). Finally, for practical application, we investigate the adsorption and diffusion behavior of Mg on bilayer BeB2. Three configurations are considered: AA stacking (overlapping of Be atoms in upper layer with Be atoms in lower layer), AB stacking (overlapping of Be atoms in upper layer with B atoms in lower layer), and AC stacking (overlapping of Be atoms in upper layer with B—B bonds in lower layer). The most stable configuration is AB stacking (shown in Fig.(f)) with the interlayer spacing of 3.12 Å and the binding energy of –120.97 meV/atom. Comparing with the BeB2 monolayer structure, the adsorption energy of Mg is –2.24 eV for Be1, –1.38 eV for B5 site, and –1.90 eV for B4 site, while the lowest diffusion energy barrier is 0.13 eV along the path of B5-Be3-B5. Therefore, according to the above-mentioned properties, we believe that BeB2 monolayer can serve as an excellent MIBs anode material.
      Corresponding author: Ye Xiao-Juan, yexj@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61974068).
    [1]

    Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad M I 2020 Renewable Sustainable Energy Rev. 119 109549Google Scholar

    [2]

    Ma Y, Doeff M M, Visco S J, Jonghe L C D 1993 J. Electrochem. Soc. 140 2726Google Scholar

    [3]

    Hwang J Y, Myung S T, Sun Y K 2017 Chem. Soc. Rev. 46 3529Google Scholar

    [4]

    Rajagopalan R, Tang Y G, Ji X B, Jia C K, Wang H Y 2020 Adv. Funct. Mater. 30 1909486Google Scholar

    [5]

    Lin J Y, Yu T, Han F J J, Yang G C 2020 Wiley Interdiscip. Rev. Comput. Mol. Sci. 10 e1473Google Scholar

    [6]

    Mortazavi B, Rahaman O, Ahzi S, Rabczuk T 2017 Appl. Mater. Today 8 60Google Scholar

    [7]

    Yeoh K H, Chew K H, Chu Y Z, Yoon T L, Rusi, Ong D S 2019 J. Appl. Phys. 126 125302Google Scholar

    [8]

    Ullah S, Denis P A, Sato F 2017 Appl. Mater. Today 9 333Google Scholar

    [9]

    Ye X J, Gao Q, Cao H B, Wang X H, Liu C S 2023 Appl. Phys. Lett. 122 223902Google Scholar

    [10]

    Wan M Q, Zhao S Q, Zhang Z Y, Zhou N G 2022 J. Phys. Chem. C 126 9642Google Scholar

    [11]

    Wu Y, Hou J 2022 Phys. Chem. Chem. Phys. 24 14953Google Scholar

    [12]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [13]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [14]

    Zhang G X, Tkatchenko A, Paier J, Appel H, Scheffler M 2011 Phys. Rev. Lett. 107 245501Google Scholar

    [15]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [16]

    Govind N, Petersen M, Fitzgerald G, King-Simith D 2003 Comput. Mater. Sci. 28 250Google Scholar

    [17]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [18]

    Gao Q, Ye X J, Liu C S 2023 Phys. Chem. Chem. Phys. 25 6519Google Scholar

    [19]

    Panigrahi P, Mishra S B, Hussain T, Nanda B. R. K, Ahuja Rajeev 2020 ACS Appl. Nano Mater. 3 9055Google Scholar

    [20]

    Xiao C, Tang X Q, Peng J F, Ding Y H 2021 Appl. Surf. Sci. 563 150278Google Scholar

    [21]

    Khan A A, Muhammad I, Ahmad R, Ahmad L 2021 Ionics 27 4819Google Scholar

    [22]

    Wu D H, Yang B C, Zhang S R, Ruckenstein E Chen H Y 2021 J. Colloid Interface Sci. 597 401Google Scholar

    [23]

    Shakerzadeh E, Kazemimoghadam F 2021 Appl. Surf. Sci. 538 148060Google Scholar

    [24]

    Xiong F Y, Jiang Y L, Cheng L, Yu R H, Tan S S, Tang C, Zuo C L, An Q Y, Zhao Y L, Gaumet J J, Mai L Q 2022 Interdiscip. Mater. 1 140Google Scholar

    [25]

    Zhang Z H, Song M J, Si C H, Cui W R, Wang Y 2023 eScience 3 100070Google Scholar

    [26]

    Malyi O. I, Tan T. L, Manzhos S 2013 J. Power Sources 233 341Google Scholar

    [27]

    Wang L, Welborn S S, Kumar H, Li M N, Wang Z Y, Shenoy V B, Detsi E 2019 Adv. Energy Mater. 9 1902086Google Scholar

    [28]

    Shao Y Y, Gu M, Li X Y, Nie Z M, Zuo P J, Li G S, Liu T B, Xiao J Cheng Y W, Wang C M, Zhang J G, Liu J 2014 Nano Lett. 14 255Google Scholar

    [29]

    God C, Bitschnau B, Kapper K, Lenardt C, Schmuck M , Mautner F, Koller S 2017 RSC Adv. 7 14168

    [30]

    Penki T R, Valurouthu G, Shivakumara S, Sethuraman V A, Munichandraiah N 2018 New J. Chem. 42 5996Google Scholar

  • 图 1  (a) BeB2单层结构的俯视图及侧视图, 红色框架展示了BeB2单层的初级原胞结构, h表示 BeB2单层的厚度; BeB2单层的声子谱(b)、能带结构(c)以及分态密度图(d)

    Figure 1.  (a) Top and side views of BeB2 monolayer. Red frame represents the primary cell structure of BeB2, and h represents the thickness of BeB2 monolayer. (b) Phonon spectra, (c) electronic band structures, (d) partial density of states of BeB2 monolayer.

    图 2  BeB2表面所有可能的吸附点位

    Figure 2.  All the possible adsorption sites of BeB2 monolayer.

    图 3  Mg2+吸附在 Be1位的差分电荷密度分布俯视图 (a)和侧视图 (b); BeB2单层(c)以及Mg2+吸附在Be1位的BeB2 (d)的分态密度图

    Figure 3.  Top (a) and side (b) views of charge density difference for Mg2+ absorbed at Be1 site; partial density of states of BeB2 monolayer (c) and BeB2 with Mg2+ adsorbed at Be1 site (d).

    图 4  Mg2+在 BeB2表面的扩散路径俯视图, 分别对应路径 Ⅰ (a), II (c), Ⅲ (e); 对应路径的扩散势垒 路径Ⅰ (b), II (d), Ⅲ (f). 插图为 Mg2+扩散的侧视图

    Figure 4.  (a), (c), (e) Top views of Mg2+ diffusion paths on BeB2 surface, corresponding to path Ⅰ, II, and Ⅲ, respectively; (b), (d), (e) diffusion barriers of path Ⅰ, II, and Ⅲ. Insets are side views of Mg2+ diffusion pathways.

    图 5  不同吸附浓度的MgxBeB2体系完全优化后的俯视图和侧视图 (a) MgBeB2; (b) Mg2BeB2; (c) Mg3BeB2

    Figure 5.  Top and side views of different configurations after full optimization: (a) MgBeB2; (b) Mg2BeB2; (c) Mg3BeB2.

    图 6  (a) 平均吸附能随吸附浓度变化的曲线; (b) MgxBeB2形成能曲线; (c) MgBeB2, Mg2BeB2和 Mg3BeB2的ELF侧视图; (d) 吸附Mg2+的BeB2单层的开路电压; (e) Mg3BeB2在 300 K条件下分子动力学模拟 10 ps 后的能量曲线, 插图为模拟结束时体系的俯视图及侧视图

    Figure 6.  (a) Variation of average adsorption energy with the concentration of adsorbed Mg; (b) formation energy of MgxBeB2; (c) side views of electron function localization for MgBeB2, Mg2BeB2 and Mg3BeB2, respectively; (d) OCV of BeB2 monolayer with different Mg concentration; (e) total energy variation of Mg3BeB2 during ab initio molecular dynamics at 300 K. Inset exhibits the top and side snapshots at the end of 10 ps.

    图 7  (a) AA, (b) AB和(c) AC堆叠的双层BeB2的俯视图和侧视图

    Figure 7.  Top and side views of bilayer BeB2 with stacking of (a) AA, (b) AB, and (c) AC.

    图 8  (a) AB堆叠的双层BeB2层间结合能随双分子层间距的变化曲线; (b) AB堆叠的双层BeB2所有可能的吸附点位

    Figure 8.  (a) The variation of interlayer binding energy of bilayer BeB2 in AB stacking mode with interlayer spacing; (b) all possible adsorption sites of bilayer BeB2 in AB stacking mode.

    图 9  双层BeB2各层的扩散路径俯视图, 分别对应上层 (a)、中层(c)、下层(e), 以及对应路径的扩散势垒: 上层(b)、中层(d)、下层(f)

    Figure 9.  Top view of diffusion paths in each region of bilayer BeB2 in AB stacking, corresponding to the upper layer (a), middle layer (c), and lower layer (e); the diffusion barriers corresponding to the paths: upper layer (b), middle layer (d), and lower layer (f).

    表 1  Mg2+在 BeB2表面上不同吸附点位的吸附能及转移电荷数量

    Table 1.  Adsorption energy at different sites and the charge transfers of Mg2+ on BeB2 monolayer.

    Adsorption site Eads/eV ΔQ/e
    Be1 –2.67 0.29
    Be2 –2.24 0.20
    B2 –2.16 0.18
    DownLoad: CSV

    表 2  几种镁离子电池阳极材料与BeB2的性能对比 (*标识为实验数据)

    Table 2.  Comparison of several two-dimensional materials with BeB2 as MIBs anode (*experimental results).

    阳极材料 吸附能/eV 扩散势垒/eV 理论容量/(mA·h·g–1) 平均开路电压/V 体积膨胀率/%
    BeB2 –2.67 0.04 5250 0.33 2
    β12 borophene[6] –0.696 0.97 2480
    χ3 borophene[6] –0.199 2400
    Be2B[9] –0.7 0.1 7436 0.29 0.3
    α-beryllene[18] –0.24 0.099 5956 0.24 –0.18
    Si2BN[19] –1.22 0.08 648 0.67
    BSi[20] –2.34 0.86 2749 0.84
    Arsenene[21] 2.48 0.21 1429 0.83 <16
    B-MoS2[22] –0.024 0.6 921 0.154 2.67
    B40[23] 0.20 744 5.5
    *TiP2O7[24] 0.62 72* 2.4* 3.2*
    *Ge57Bi43[25] 847.5* 0.32—0.35*
    Ge[26] 0.7 1476 0.241 –178
    *Mg2Ga5[27] 290* 0.01—0.7*
    *Nano-Bi[28] 350* 0—0.25*
    *石墨[29] 22* 0.15*
    *RGO/Bi[30] 372* 0.25*
    DownLoad: CSV
    Baidu
  • [1]

    Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad M I 2020 Renewable Sustainable Energy Rev. 119 109549Google Scholar

    [2]

    Ma Y, Doeff M M, Visco S J, Jonghe L C D 1993 J. Electrochem. Soc. 140 2726Google Scholar

    [3]

    Hwang J Y, Myung S T, Sun Y K 2017 Chem. Soc. Rev. 46 3529Google Scholar

    [4]

    Rajagopalan R, Tang Y G, Ji X B, Jia C K, Wang H Y 2020 Adv. Funct. Mater. 30 1909486Google Scholar

    [5]

    Lin J Y, Yu T, Han F J J, Yang G C 2020 Wiley Interdiscip. Rev. Comput. Mol. Sci. 10 e1473Google Scholar

    [6]

    Mortazavi B, Rahaman O, Ahzi S, Rabczuk T 2017 Appl. Mater. Today 8 60Google Scholar

    [7]

    Yeoh K H, Chew K H, Chu Y Z, Yoon T L, Rusi, Ong D S 2019 J. Appl. Phys. 126 125302Google Scholar

    [8]

    Ullah S, Denis P A, Sato F 2017 Appl. Mater. Today 9 333Google Scholar

    [9]

    Ye X J, Gao Q, Cao H B, Wang X H, Liu C S 2023 Appl. Phys. Lett. 122 223902Google Scholar

    [10]

    Wan M Q, Zhao S Q, Zhang Z Y, Zhou N G 2022 J. Phys. Chem. C 126 9642Google Scholar

    [11]

    Wu Y, Hou J 2022 Phys. Chem. Chem. Phys. 24 14953Google Scholar

    [12]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [13]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [14]

    Zhang G X, Tkatchenko A, Paier J, Appel H, Scheffler M 2011 Phys. Rev. Lett. 107 245501Google Scholar

    [15]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [16]

    Govind N, Petersen M, Fitzgerald G, King-Simith D 2003 Comput. Mater. Sci. 28 250Google Scholar

    [17]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [18]

    Gao Q, Ye X J, Liu C S 2023 Phys. Chem. Chem. Phys. 25 6519Google Scholar

    [19]

    Panigrahi P, Mishra S B, Hussain T, Nanda B. R. K, Ahuja Rajeev 2020 ACS Appl. Nano Mater. 3 9055Google Scholar

    [20]

    Xiao C, Tang X Q, Peng J F, Ding Y H 2021 Appl. Surf. Sci. 563 150278Google Scholar

    [21]

    Khan A A, Muhammad I, Ahmad R, Ahmad L 2021 Ionics 27 4819Google Scholar

    [22]

    Wu D H, Yang B C, Zhang S R, Ruckenstein E Chen H Y 2021 J. Colloid Interface Sci. 597 401Google Scholar

    [23]

    Shakerzadeh E, Kazemimoghadam F 2021 Appl. Surf. Sci. 538 148060Google Scholar

    [24]

    Xiong F Y, Jiang Y L, Cheng L, Yu R H, Tan S S, Tang C, Zuo C L, An Q Y, Zhao Y L, Gaumet J J, Mai L Q 2022 Interdiscip. Mater. 1 140Google Scholar

    [25]

    Zhang Z H, Song M J, Si C H, Cui W R, Wang Y 2023 eScience 3 100070Google Scholar

    [26]

    Malyi O. I, Tan T. L, Manzhos S 2013 J. Power Sources 233 341Google Scholar

    [27]

    Wang L, Welborn S S, Kumar H, Li M N, Wang Z Y, Shenoy V B, Detsi E 2019 Adv. Energy Mater. 9 1902086Google Scholar

    [28]

    Shao Y Y, Gu M, Li X Y, Nie Z M, Zuo P J, Li G S, Liu T B, Xiao J Cheng Y W, Wang C M, Zhang J G, Liu J 2014 Nano Lett. 14 255Google Scholar

    [29]

    God C, Bitschnau B, Kapper K, Lenardt C, Schmuck M , Mautner F, Koller S 2017 RSC Adv. 7 14168

    [30]

    Penki T R, Valurouthu G, Shivakumara S, Sethuraman V A, Munichandraiah N 2018 New J. Chem. 42 5996Google Scholar

  • [1] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of Magnetic Janus Materials Based on Machine Learning and First-Principles Calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] Zhang Lei, Chen Qi-Hang, Cao Shuo, Qian Ping. First-principles calculations of carrier mobility in monolayer IrSCl and IrSI. Acta Physica Sinica, 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [3] Shi Xiao-Hong, Hou Bin-Peng, Li Zhi-Shuo, Chen Jing-Jin, Shi Xiao-Wen, Zhu Zi-Zhong. Formation of oxygen vacancy clusters in Li-rich Mn-based cathode Materials of lithium-ion batteries: First-principles calculations. Acta Physica Sinica, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [4] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [5] Song Rui, Wang Bi-Li, Feng Kai, Wang Li, Liang Dan-Dan. Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study. Acta Physica Sinica, 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [6] Chen Si-Yu, Ye Xiao-Juan, Liu Chun-Sheng. Theoretical research of two-dimensional germanether in sodium-ion battery. Acta Physica Sinica, 2022, 71(22): 228202. doi: 10.7498/aps.71.20220572
    [7] Bai Liang, Zhao Qi-Xu, Shen Jian-Wei, Yang Yan, Yuan Qing-Hong, Zhong Cheng, Sun Hai-Tao, Sun Zhen-Rong. Computational screening of photocathodes based on layered MXene coated Cs3Sb heterostructures. Acta Physica Sinica, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [8] Liang Ting, Wang Yang-Yang, Liu Guo-Hong, Fu Wang-Yang, Wang Huai-Zhang, Chen Jing-Fei. First-principles investigations on gas adsorption properties of V-doped monolayer MoS2. Acta Physica Sinica, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [9] Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen. First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe. Acta Physica Sinica, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [10] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [11] Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211516
    [12] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [13] Yin Yuan, Li Ling, Yin Wan-Jian. Theoretical and computational study on defects of solar cell materials. Acta Physica Sinica, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [14] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [15] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [16] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [17] Zhang Wei,  Chen Kai-Bin,  Chen Zhen-Dong. First-principles study on Jahn-Teller effect in Cr monolayer film. Acta Physica Sinica, 2018, 67(23): 237301. doi: 10.7498/aps.67.20181669
    [18] Shi Ruo-Yu, Wang Lin-Feng, Gao Lei, Song Ai-Sheng, Liu Yan-Min, Hu Yuan-Zhong, Ma Tian-Bao. Quantitative calculation of atomic-scale frictional behavior of two-dimensional material based on sliding potential energy surface. Acta Physica Sinica, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [19] Liu Yue-Ying, Zhou Tie-Ge, Lu Yuan, Zuo Xu. First principles caculations of h-BN monolayer with group IA/IIA elements replacing B as impurities. Acta Physica Sinica, 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [20] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
Metrics
  • Abstract views:  2044
  • PDF Downloads:  188
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2024
  • Accepted Date:  25 March 2024
  • Available Online:  16 April 2024
  • Published Online:  05 June 2024

/

返回文章
返回
Baidu
map