-
Defect control of semiconductors is critical to the photoelectric conversion efficiency of solar cells, because the defect and doping directly determine the carrier distribution, concentration, charge transfer and non-radiative recombination of photogenerated carriers. The defect types, structures and properties are complicated in the real semiconductors, which makes experimental characterization difficult, especially for the point defects. In this review, we firstly introduce the approaches of defect calculation based on the first-principles calculations, and take a series of typical solar cell materials for example, including CdTe, Cu(In/Ga)Se2, Cu2ZnSnS(Se)4 and CH3NH3PbI3. The elucidating of computations is also conducible to understanding and controlling the defect properties of solar cell materials in practical ways. The comparative study of these solar cell materials indicates that their efficiency bottlenecks are closely related to their defect properties. Unlike the traditional four-coordination semiconductor, the unique “defect tolerance” characteristic shown in the six-coordination perovskite materials enables the battery to have a high photoelectric conversion efficiency even when it is prepared not under harsh experimental conditions. Based on the first principles, the defect calculation plays an increasingly important role in understanding the material properties of solar cells and the bottleneck of device efficiency. At present, the calculation of defects based on the first principle mainly focuses on the formation energy and transition energy levels of defects. However, there is still a lack of researches on the dynamic behavior of carriers, especially on the non-radiative recombination of carriers, which directly affects the photoelectric conversion efficiency. Recently, with the improvement of computing power and the development of algorithms, it is possible to quantitatively calculate the electron-ion interaction, then quantitatively calculate the carriers captured by defect state. These methods have been used to study the defects of solar cells, especially perovskite solar cells. In this direction, how to combine these theoretical calculation results with experimental results to provide a more in-depth understanding of experimental results and further guide experiments in improving the efficiency of solar cells is worthy of further in-depth research.
-
Keywords:
- solar cell materials /
- semiconductor /
- defect /
- first-principles calculation
[1] Neumark G F 1997 Mater. Sci. Eng. 21 3
[2] Zhang S, Northrup J 1991 Phys. Rev. Lett. 67 2339
Google Scholar
[3] Hine N D M, Frensch K, Foulkes W M C, Finnis M W 2009 Phys. Rev. B 79 024112
Google Scholar
[4] Wei S H 2004 Comp. Mater. Sci. 30 337
Google Scholar
[5] Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 J. Appl. Phys. 57 9642
[6] Wei S H, Zunger A 1998 Appl. Phys. Lett. 72 2011
Google Scholar
[7] Yin W J, Tang H, Wei S H, Al-Jassim M M, Turner J, Yan Y 2010 Phys. Rev. B 82 045106
Google Scholar
[8] Nishijima K, Ohtani B, Yan X, Kamai T A, Chiyoya T, Tsubota T, Murakami N, Ohno T 2007 Chem. Phys. 339 64
Google Scholar
[9] Irie H, Watanabe Y, Hashimoto K 2003 Chem. Lett. 107 5483
[10] Yin W J, Ma J, Wei S H, Aljassim M M, Yan Y 2012 Phys. Rev. B 86 045211
Google Scholar
[11] Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903
Google Scholar
[12] Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653
Google Scholar
[13] Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584
Google Scholar
[14] Yang D, Ming W, Shi H, Zhang L, Du M H 2016 Chem. Mater. 28 4349
Google Scholar
[15] Mosconi E, Amat A, Nazeeruddin M K, Grätzel M, Angelis F D 2013 J. Mater. Chem. C 117 13902
[16] Carvalho A, Tagantsev A K, Öberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215
Google Scholar
[17] Lindstr M A, Mirbt S, Sanyal B, Klintenberg M 2016 J. Phys. D Appl. Phys. 49 035101
Google Scholar
[18] Berding M A 1999 Phys. Rev. B 60 8943
Google Scholar
[19] Wei S H, Zhang S B 2002 Phys. Rev. B 66
[20] Chang Y C, James R B, Davenport J W 2006 Phys. Rev. B 73 035211
Google Scholar
[21] Du M H, Takenaka H, Singh D J 2008 Phys. Rev. B 77 094122
Google Scholar
[22] Du M H, Takenaka H, Singh D J 2008 J. Appl. Phys. 104 093521
Google Scholar
[23] Lordi V 2013 J. Cryst. Growth 379 84
Google Scholar
[24] Biswas K, Du M H 2012 New J. Phys. 14 063020
Google Scholar
[25] Shepidchenko A, Sanyal B, Klintenberg M, Mirbt S 2015 Sci. Rep. 5 14509
Google Scholar
[26] Emanuelsson P, Omling P, Meyer B K, Wienecke M, Schenk M 1993 Phys. Rev. B 47 15578
Google Scholar
[27] Castaldini A, Cavallini A, Fraboni B, Fernandez P, Piqueras J 1998 J. Appl. Phys. 83 2121
Google Scholar
[28] Szeles C, Shan Y, Lynn K G, Moodenbaugh A, Eissler E E 1997 Phys. Rev. B 55 6945
Google Scholar
[29] Reislöhner U 1998 J. Cryst. Growth 184 1160
[30] Kimel A V, Pavlov V V, Pisarev R V, Gridnev V N, Rasing T 2000 Phys. Rev. B 621 R10610
[31] Yang J H, Yin W J, Park J S, Ma J, Wei S H 2016 Semicond. Sci. Tech. 31 083002
Google Scholar
[32] Ma J, Kuciauskas D, Albin D, Bhattacharya R, Reese M, Barnes T, Li J V, Gessert T, Wei S H 2013 Phys. Rev. Lett. 111 067402
Google Scholar
[33] Tsuchiya T 2013 Appl. Phys. Express 4 094104
[34] Reshchikov M A, Kvasov A A, Bishop M F, McMullen T, Usikov A, Soukhoveev V, Dmitriev V A 2011 Phys. Rev. B 84 075212
Google Scholar
[35] Juršėnas S, Miasojedovas S, Kurilčik G, Žukauskas A, Hageman P R 2003 Appl. Phys. Lett. 83 66
Google Scholar
[36] Kuciauskas D, Kanevce A, Dippo P, Seyedmohammadi S, Malik R 2015 IEEE J. Photovolt. 5 366
Google Scholar
[37] Shi L, Wang L W 2012 Phys. Rev. Lett. 109 245501
Google Scholar
[38] Park J H, Farrell S, Kodama R, Blissett C, Wang X, Colegrove E, Metzger W K, Gessert T A, Sivananthan S 2014 J. Electron. Mater. 43 2998
Google Scholar
[39] Fahrenbruch A L 1987 Sol. Energy Mater. Sol. Cells 21 399
[40] Morehead F F, Mandel G 1964 IEEE T. Electron Dev. 5 53
[41] Heller, A 1977 J. Electrochem. Soc. 124 697
Google Scholar
[42] Anthony T C, Fahrenbruch A L, Peters M G, Bube R H 1998 J. Appl. Phys. 57 400
[43] Zandian M, Chen A C, Edwall D D, Pasko J G, Arias J M 1997 Appl. Phys. Lett. 71 2815
Google Scholar
[44] Hails J E, Irvine S J C, Cole-Hamilton D J, Giess J, Houlton M R, Graham A 2008 J. Electron. Mater. 37 1291
Google Scholar
[45] Arias M J 1990 J. Vac. Sci. Technol. A 8 1025
Google Scholar
[46] Yang J H, Shi L, Wang L W, Wei S H 2016 Sci. Rep. 6 21712
Google Scholar
[47] Kraft C, Metzner H, Hädrich M, Reislöhner U, Schley P, Gobsch G, Goldhahn R 2010 Thin Solid Films 108 777
[48] Park C, Chadi D 1995 Phys. Rev. Lett. 75 1134
Google Scholar
[49] Chadi D J 1999 Phys. Rev. B 59 15181
Google Scholar
[50] Duenow J N, Burst J M, Albin D S, Kuciauskas D, Johnston S W, Reedy R C, Metzger W K 2014 Appl. Phys. Lett. 105 25
[51] Crowder B L, Hammer W N 1966 Phys. Rev. 150 541
Google Scholar
[52] Altosaar M, Kukk P E, Mellikov E 2000 Thin Solid Films 361 443
[53] Mccandless B E, Moulton L V, Birkmire R W 1997 Prog. Photovolt: Res. Appl. 5 249
Google Scholar
[54] Moutinho H R, Aljassim M M, Levi D H, Dippo P C, Kazmerski L L 1998 J. Vac. Sci. Technol. 16 1251
Google Scholar
[55] Zhang L, Da-Silva J L F, Li J, Yan Y, Gessert T A, Wei S H 2008 Phys. Rev. Lett. 101 155501
Google Scholar
[56] Komin V, Tetali B, Viswanathan V, Yu S, Ferekides C S 2003 Thin Solid Films 431 143
[57] Ringel S A, Smith A W, MacDougal M H, Rohatgi A 1991 Jpn. J. Appl. Phys. 70 881
Google Scholar
[58] Visoly-Fisher I, Cohen S R, Ruzin A, Cahen D 2004 Adv. Mater. 16 879
Google Scholar
[59] Li C, Wu Y, Poplawsky J, Pennycook T J, Paudel N, Yin W, Haigh S J, Oxley M P, Lupini A R, Al-Jassim M 2014 Phys. Rev. Lett. 112 156103
Google Scholar
[60] Hofmann D M, Omling P, Grimmeiss H G, Meyer B K, Sinerius D 1992 Phys. Rev. B 45 6247
Google Scholar
[61] Kranz L, Gretener C, Perrenoud J, Schmitt R, Pianezzi F, Mattina F L, Blosch P, Cheah E, Chirila A, Fella C M 2013 Nat. Commun. 4 2306
Google Scholar
[62] Perrenoud J, Kranz L, Gretener C, Pianezzi F, Nishiwaki S, Buecheler S, Tiwari A N 2013 J. Appl. Phys. 114 174505
Google Scholar
[63] Yan Y, Al-Jassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912
Google Scholar
[64] Park J S, Kang J, Yang J H, Metzger W, Wei S H 2015 New J. Phys. 17 013027
Google Scholar
[65] Yan Y, Al-Jassim M M, Jones K M, Wei S H, Zhang S B 2000 Appl. Phys. Lett. 77 1461
Google Scholar
[66] Yan Y, Al-Jassim M M, Jones K M 2003 J. Appl. Phys. 94 2976
Google Scholar
[67] Sun C, Ning L, Wang J, Lee J, Kim M J 2013 Appl. Phys. Lett. 103 252104
Google Scholar
[68] Ma J, Yang J, Wei S H, Da-Silva J L F 2014 Phys. Rev. B 90 155208
Google Scholar
[69] Wei S H 2013 Phys. Rev. Lett. 110 235901
Google Scholar
[70] Jaffe J E, Zunger A 1983 Phys. Rev. B 28 5822
Google Scholar
[71] Jaffe J E, Zunger A 1984 Phys. Rev. B 30 741
Google Scholar
[72] Martins J L, Zunger A 2004 Phys. Rev. Lett. 56 1400
[73] Zunger A 1987 Appl. Phys. Lett. 50 164
Google Scholar
[74] Wei S H, Ferreira L G, Zunger A 1992 Phys. Rev. B 45 2533
Google Scholar
[75] Osório R, Froyen S, Zunger A 1991 Phys. Rev. B 43 14055
Google Scholar
[76] Parkes J, Tomlinson R D, Hampshire M J 1973 Solid State Electron 16 773
Google Scholar
[77] Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 9642
Google Scholar
[78] Stolt L, Hedstrom J, Kessler J, Ruckh M, Velthaus K O, Schock H W 1993 Appl. Phys. Lett. 62 597
Google Scholar
[79] Gabor A M, Tuttle J R, Albin D S, Contreras M A, Noufi R, Hermann A M 1998 Appl. Phys. Lett. 65 198
[80] Contreras M A, Mansfield L M, Egaas B, Li J, Romero M, Noufi R, Rudigervoigt E, Mannstadt W 2012 37th IEEE Photovoltaic Specialists Conference, Seattle, June 19–24, 2011 p843
[81] Se to, John Y W 1975 J. Appl. Phys. 46 5247
Google Scholar
[82] Gloeckler M, Sites J R, Metzger W K 2005 J. Appl. Phys. 9 8
[83] Metzger W K, Gloeckler M 2005 J. Appl. Phys. 98 063701
Google Scholar
[84] Taretto K, Rau U 2008 J. Appl. Phys. 103 225
[85] Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovolt. 19 894
Google Scholar
[86] Sadewasser S, Abou-Ras D, Azulay D, Baier R, Balberg I, Cahen D, Cohen S, Gartsman K, Ganesan K, Kavalakkatt J 2011 Thin Solid Films 519 7341
Google Scholar
[87] Schuler S, Nishiwaki S, Beckmann J, Rega N, Lux-Steiner M C 2003 Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, May 19–24, 2002 p504
[88] Hetzer M J, Strzhemechny Y M, Gao M, Contreras M A, Brillson L J 2005 Appl. Phys. Lett. 86 162105
Google Scholar
[89] Lei C, Li C M, Rockett A, Robertson I M 2007 J. Appl. Phys. 101 499
[90] Abou-Ras D, Schaffer B, Schaffer M, Schmidt S S, Unold T 2012 Phys. Rev. Lett. 108 075502
Google Scholar
[91] Yin W J, Wu Y, Noufi R, Al-Jassim M, Yan Y 2013 Appl. Phys. Lett. 102 193905
Google Scholar
[92] Kaufmann C A, Caballero R, Unold T, Hesse R, Klenk R, Schorr S, Nichterwitz M, Schock H W 2009 Sol. Energy Mater. Sol. Cells 93 859
Google Scholar
[93] Grimmer H, Bollmann W, Warrington D H 1974 Acta Crystallogr. 30 197
Google Scholar
[94] Abou-Ras D, Schmidt S S, Caballero R, Unold T, Schock H W, Koch C T, Schaffer B, Schaffer M, Choi P P, Cojocaru-Mirédin O 2012 Adv. Energy Mater. 2 992
Google Scholar
[95] Ahn S J, Jung S, Gwak J, Cho A, Shin K, Yoon K, Park D, Cheong H, Yun J H 2010 Appl. Phys. Lett. 97 021905
Google Scholar
[96] Grossberg M, Krustok J, Timmo K, Altosaar M 2009 Thin Solid Films 517 2489
Google Scholar
[97] Choi S G, Zhao H Y, Persson C, Perkins C L, Donohue A L, To B, Norman A G, Li J, Repins I L 2012 J. Appl. Phys 111 033506
Google Scholar
[98] Katagiri H, Jimbo K, Maw W S, Oishi K, Takeuchi A 2009 Thin Solid Films 517 2455
Google Scholar
[99] Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 phys. stat. sol. 245 1772
Google Scholar
[100] Scragg J J, Dale P J, Peter L M 2009 Thin Solid Films 517 2481
Google Scholar
[101] Wei S H, Zhang S B 2005 J. Phys. Chem. Solids 66 1994
Google Scholar
[102] Wei S H, Zhang S B, Zunger A 1998 Appl. Phys. Lett. 72 1
Google Scholar
[103] Kumar Y B K, Bhaskar P U, Babu G S, Raja V S 2009 Phys. Stat. Sol. 207 149
[104] Wibowo R A, Kim W S, Lee E S, Munir B, Kim K H 2007 J. Phys. Chem. Solids 68 1908
Google Scholar
[105] Miyamoto Y, Tanaka K, Oonuki M, Moritake N, Uchiki H 2008 Sol. Energy Mater. Sol. Cells 47 596
[106] Altosaar M, Raudoja J, Timmo K, Danilson M, Grossberg M, Krustok J, Mellikov E 2008 Phys. Stat. Sol. 205 167
Google Scholar
[107] Oishi K, Saito G, Ebina K, Nagahashi M, Jimbo K, Maw W S, Katagiri H, Yamazaki M, Araki H, Takeuchi A 2008 Thin Solid Films 517 1449
Google Scholar
[108] Zhang X, Shi X, Ye W, Ma C, Wang C 2009 Appl. Phys. A-Mater. Sci. 94 381
Google Scholar
[109] Hones K, Zscherpel E, Scragg J, Siebentritt S 2009 Phys. Rev. B 404 4949
[110] Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522
Google Scholar
[111] Chen S, Yang J H, Gong X G, Walsh A, Wei S H 2010 Phys. Rev. B 81 245204
Google Scholar
[112] Chen S, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902
Google Scholar
[113] Nagoya A, Asahi R, Wahl R, Kresse G 2010 Phys. Rev. B 81 113202
Google Scholar
[114] Persson C, Zhao Y J, Lany S, Zunger A 2005 Phys. Rev. B 72 035211
Google Scholar
[115] Katagiri H, Saitoh K, Washio T, Shinohara H, Kurumadani T, Miyajima S 2001 Sol. Energy Mater. Sol. Cells 65 141
Google Scholar
[116] Tanaka T, Nagatomo T, Kawasaki D, Nishio M, Guo Q, Wakahara A, Yoshida A, Ogawa H 2005 J. Phys. Chem. Solids 66 1978
Google Scholar
[117] Kumar Y B K, Babu G S, Bhaskar P U, Raja V S 2009 Sol. Energy Mater. Sol. Cells 93 1230
Google Scholar
[118] Shinde N M, Dubal D P, Dhawale D S, Lokhande C D, Kim J H, Moon J H 2012 Mater. Res. Bull. 47 302
Google Scholar
[119] Tanaka K, Moritake N, Oonuki M, Uchiki H 2008 Jpn. J. Appl. Phys. 47 598
Google Scholar
[120] Prabhakar T, Jampana N 2011 Sol. Energy Mater. Sol. Cells 95 1001
Google Scholar
[121] Schmidt S S, Abouras D, Sadewasser S, Yin W, Feng C, Yan Y 2012 Phys. Rev. Lett. 109 6709
[122] Azulay D, Balberg I, Millo O 2012 Phys. Rev. Lett. 108 076603
Google Scholar
[123] Schmid D, Ruckh M, Schock H W 1996 Appl. Surf. Sci. 103 409
Google Scholar
[124] Yan Y, Jones K M, Abushama J, Young M, Asher S, Al-Jassim M M, Noufi R 2002 Appl. Phys. Lett. 81 1008
Google Scholar
[125] Yan Y, Noufi R, Al-Jassim M M 2006 Phys. Rev. Lett. 96 205501
Google Scholar
[126] Yin W J, Wu Y, Wei S H, Noufi R, Yan Y 2014 Adv. Energy Mater. 4 1
[127] Yin W J, Yang J H, Kang J, Yan Y, Wei S H 2015 J. Mater. Chem. A 3 8926
Google Scholar
[128] Best Research-Cell Efficiency Chart, Korea Research Institute of Chemical Technology and MIT https://www. nrel.gov/pv/cell-efficiency.html/[2019-11-20]
[129] Walsh A, Watson G W 2005 J. Solid State Chem. 178 1422
Google Scholar
[130] Walsh A, Payne D J, Egdell R G, Watson G W 2011 Chemi. Soc. Rev. 40 4455
Google Scholar
[131] Wei S H, Zunger A 1997 Phys. Rev. B 55 16
[132] Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701
Google Scholar
[133] Yu L, Kokenyesi R S, Keszler D A, Zunger A 2013 Adv. Energy Mater. 3 43
Google Scholar
[134] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395
Google Scholar
[135] Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y, Huang J 2014 Appl. Phys. Lett. 105 163508
Google Scholar
[136] Yin W J, Wei S H, Al-Jassim M M, Yan Y 2011 Appl. Phys. Lett. 99 142109
Google Scholar
[137] Brandt R E, Stevanovic V, Ginley D S, Buonassisi T 2015 Mrs Commun. 5 265
Google Scholar
[138] Walsh A, Zunger A 2017 Nat. Mater. 16 964
Google Scholar
[139] Seok S I, Gratzel M, Park N G 2018 Small 14 1704177
Google Scholar
[140] Wang R, Xue J J, Wang K L, Wang Z K, Luo Y Q, Fenning D, Xu G W, Nuryyeva S, Huang T Y, Zhao Y P, Yang J L, Zhu J H, Wang M H, Tan S, Yavuz I, Houk K N, Yang Y 2019 Science 366 1509
Google Scholar
[141] Gao F, Zhao Y, Zhang X W, You J B 2019 Adv. Energy Mater. 1902650
[142] Ni Z Y, Bao C X, Y. L, Jiang Q, Wu W Q, Chen S S, Dai X Z, Chen B, Hartweg B, Yu Z S, Holman Z, Huang J S 2020 Science 367 1352
Google Scholar
[143] Li J L, Yang J, Wu T, Wei S H 2019 J. Mater. Chem. C 7 4230
[144] Agiorgousis M L, Sun Y Y, Zeng H, Zhang S 2014 J. Am. Chem. Soc. 136 14570
Google Scholar
[145] Li W, SunY Y, Li I Q, Zhou Z H, Tang J F, Prezhdo O V 2018 J. Am. Chem. Soc. 140 15753
Google Scholar
[146] Wang J, Li W, Yin W J 2020 Adv. Mater. 32 1906115
Google Scholar
-
图 11 CuIn1–xGaxSe2的光电转换效率和开路电压随带隙值变化趋势
Fig. 11. The photoelectric conversion efficiency and open circuit voltage of CuIn1–xGaxSe2 vs. the bandgap value[80].
图 12 CuInSe2的
$ \sum 3\left(114\right) $ 晶界 (a)超胞结构; (b)晶界处的局域原子结构; (c)晶界处的态密度、能带结构和差分电荷密度; (d)晶界处错键形成缺陷带的过程[91]Fig. 12.
$ \sum 3\left(114\right) $ of CuInSe2 grain boundary: (a) Supercell structure; (b) local atomic structures at grain boundaries; (c) state density, energy band structure and differential charge density at the grain boundary; (d) the process of forming a defect band by a wrong bond at the grain boundary[91]. -
[1] Neumark G F 1997 Mater. Sci. Eng. 21 3
[2] Zhang S, Northrup J 1991 Phys. Rev. Lett. 67 2339
Google Scholar
[3] Hine N D M, Frensch K, Foulkes W M C, Finnis M W 2009 Phys. Rev. B 79 024112
Google Scholar
[4] Wei S H 2004 Comp. Mater. Sci. 30 337
Google Scholar
[5] Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 J. Appl. Phys. 57 9642
[6] Wei S H, Zunger A 1998 Appl. Phys. Lett. 72 2011
Google Scholar
[7] Yin W J, Tang H, Wei S H, Al-Jassim M M, Turner J, Yan Y 2010 Phys. Rev. B 82 045106
Google Scholar
[8] Nishijima K, Ohtani B, Yan X, Kamai T A, Chiyoya T, Tsubota T, Murakami N, Ohno T 2007 Chem. Phys. 339 64
Google Scholar
[9] Irie H, Watanabe Y, Hashimoto K 2003 Chem. Lett. 107 5483
[10] Yin W J, Ma J, Wei S H, Aljassim M M, Yan Y 2012 Phys. Rev. B 86 045211
Google Scholar
[11] Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903
Google Scholar
[12] Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653
Google Scholar
[13] Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584
Google Scholar
[14] Yang D, Ming W, Shi H, Zhang L, Du M H 2016 Chem. Mater. 28 4349
Google Scholar
[15] Mosconi E, Amat A, Nazeeruddin M K, Grätzel M, Angelis F D 2013 J. Mater. Chem. C 117 13902
[16] Carvalho A, Tagantsev A K, Öberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215
Google Scholar
[17] Lindstr M A, Mirbt S, Sanyal B, Klintenberg M 2016 J. Phys. D Appl. Phys. 49 035101
Google Scholar
[18] Berding M A 1999 Phys. Rev. B 60 8943
Google Scholar
[19] Wei S H, Zhang S B 2002 Phys. Rev. B 66
[20] Chang Y C, James R B, Davenport J W 2006 Phys. Rev. B 73 035211
Google Scholar
[21] Du M H, Takenaka H, Singh D J 2008 Phys. Rev. B 77 094122
Google Scholar
[22] Du M H, Takenaka H, Singh D J 2008 J. Appl. Phys. 104 093521
Google Scholar
[23] Lordi V 2013 J. Cryst. Growth 379 84
Google Scholar
[24] Biswas K, Du M H 2012 New J. Phys. 14 063020
Google Scholar
[25] Shepidchenko A, Sanyal B, Klintenberg M, Mirbt S 2015 Sci. Rep. 5 14509
Google Scholar
[26] Emanuelsson P, Omling P, Meyer B K, Wienecke M, Schenk M 1993 Phys. Rev. B 47 15578
Google Scholar
[27] Castaldini A, Cavallini A, Fraboni B, Fernandez P, Piqueras J 1998 J. Appl. Phys. 83 2121
Google Scholar
[28] Szeles C, Shan Y, Lynn K G, Moodenbaugh A, Eissler E E 1997 Phys. Rev. B 55 6945
Google Scholar
[29] Reislöhner U 1998 J. Cryst. Growth 184 1160
[30] Kimel A V, Pavlov V V, Pisarev R V, Gridnev V N, Rasing T 2000 Phys. Rev. B 621 R10610
[31] Yang J H, Yin W J, Park J S, Ma J, Wei S H 2016 Semicond. Sci. Tech. 31 083002
Google Scholar
[32] Ma J, Kuciauskas D, Albin D, Bhattacharya R, Reese M, Barnes T, Li J V, Gessert T, Wei S H 2013 Phys. Rev. Lett. 111 067402
Google Scholar
[33] Tsuchiya T 2013 Appl. Phys. Express 4 094104
[34] Reshchikov M A, Kvasov A A, Bishop M F, McMullen T, Usikov A, Soukhoveev V, Dmitriev V A 2011 Phys. Rev. B 84 075212
Google Scholar
[35] Juršėnas S, Miasojedovas S, Kurilčik G, Žukauskas A, Hageman P R 2003 Appl. Phys. Lett. 83 66
Google Scholar
[36] Kuciauskas D, Kanevce A, Dippo P, Seyedmohammadi S, Malik R 2015 IEEE J. Photovolt. 5 366
Google Scholar
[37] Shi L, Wang L W 2012 Phys. Rev. Lett. 109 245501
Google Scholar
[38] Park J H, Farrell S, Kodama R, Blissett C, Wang X, Colegrove E, Metzger W K, Gessert T A, Sivananthan S 2014 J. Electron. Mater. 43 2998
Google Scholar
[39] Fahrenbruch A L 1987 Sol. Energy Mater. Sol. Cells 21 399
[40] Morehead F F, Mandel G 1964 IEEE T. Electron Dev. 5 53
[41] Heller, A 1977 J. Electrochem. Soc. 124 697
Google Scholar
[42] Anthony T C, Fahrenbruch A L, Peters M G, Bube R H 1998 J. Appl. Phys. 57 400
[43] Zandian M, Chen A C, Edwall D D, Pasko J G, Arias J M 1997 Appl. Phys. Lett. 71 2815
Google Scholar
[44] Hails J E, Irvine S J C, Cole-Hamilton D J, Giess J, Houlton M R, Graham A 2008 J. Electron. Mater. 37 1291
Google Scholar
[45] Arias M J 1990 J. Vac. Sci. Technol. A 8 1025
Google Scholar
[46] Yang J H, Shi L, Wang L W, Wei S H 2016 Sci. Rep. 6 21712
Google Scholar
[47] Kraft C, Metzner H, Hädrich M, Reislöhner U, Schley P, Gobsch G, Goldhahn R 2010 Thin Solid Films 108 777
[48] Park C, Chadi D 1995 Phys. Rev. Lett. 75 1134
Google Scholar
[49] Chadi D J 1999 Phys. Rev. B 59 15181
Google Scholar
[50] Duenow J N, Burst J M, Albin D S, Kuciauskas D, Johnston S W, Reedy R C, Metzger W K 2014 Appl. Phys. Lett. 105 25
[51] Crowder B L, Hammer W N 1966 Phys. Rev. 150 541
Google Scholar
[52] Altosaar M, Kukk P E, Mellikov E 2000 Thin Solid Films 361 443
[53] Mccandless B E, Moulton L V, Birkmire R W 1997 Prog. Photovolt: Res. Appl. 5 249
Google Scholar
[54] Moutinho H R, Aljassim M M, Levi D H, Dippo P C, Kazmerski L L 1998 J. Vac. Sci. Technol. 16 1251
Google Scholar
[55] Zhang L, Da-Silva J L F, Li J, Yan Y, Gessert T A, Wei S H 2008 Phys. Rev. Lett. 101 155501
Google Scholar
[56] Komin V, Tetali B, Viswanathan V, Yu S, Ferekides C S 2003 Thin Solid Films 431 143
[57] Ringel S A, Smith A W, MacDougal M H, Rohatgi A 1991 Jpn. J. Appl. Phys. 70 881
Google Scholar
[58] Visoly-Fisher I, Cohen S R, Ruzin A, Cahen D 2004 Adv. Mater. 16 879
Google Scholar
[59] Li C, Wu Y, Poplawsky J, Pennycook T J, Paudel N, Yin W, Haigh S J, Oxley M P, Lupini A R, Al-Jassim M 2014 Phys. Rev. Lett. 112 156103
Google Scholar
[60] Hofmann D M, Omling P, Grimmeiss H G, Meyer B K, Sinerius D 1992 Phys. Rev. B 45 6247
Google Scholar
[61] Kranz L, Gretener C, Perrenoud J, Schmitt R, Pianezzi F, Mattina F L, Blosch P, Cheah E, Chirila A, Fella C M 2013 Nat. Commun. 4 2306
Google Scholar
[62] Perrenoud J, Kranz L, Gretener C, Pianezzi F, Nishiwaki S, Buecheler S, Tiwari A N 2013 J. Appl. Phys. 114 174505
Google Scholar
[63] Yan Y, Al-Jassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912
Google Scholar
[64] Park J S, Kang J, Yang J H, Metzger W, Wei S H 2015 New J. Phys. 17 013027
Google Scholar
[65] Yan Y, Al-Jassim M M, Jones K M, Wei S H, Zhang S B 2000 Appl. Phys. Lett. 77 1461
Google Scholar
[66] Yan Y, Al-Jassim M M, Jones K M 2003 J. Appl. Phys. 94 2976
Google Scholar
[67] Sun C, Ning L, Wang J, Lee J, Kim M J 2013 Appl. Phys. Lett. 103 252104
Google Scholar
[68] Ma J, Yang J, Wei S H, Da-Silva J L F 2014 Phys. Rev. B 90 155208
Google Scholar
[69] Wei S H 2013 Phys. Rev. Lett. 110 235901
Google Scholar
[70] Jaffe J E, Zunger A 1983 Phys. Rev. B 28 5822
Google Scholar
[71] Jaffe J E, Zunger A 1984 Phys. Rev. B 30 741
Google Scholar
[72] Martins J L, Zunger A 2004 Phys. Rev. Lett. 56 1400
[73] Zunger A 1987 Appl. Phys. Lett. 50 164
Google Scholar
[74] Wei S H, Ferreira L G, Zunger A 1992 Phys. Rev. B 45 2533
Google Scholar
[75] Osório R, Froyen S, Zunger A 1991 Phys. Rev. B 43 14055
Google Scholar
[76] Parkes J, Tomlinson R D, Hampshire M J 1973 Solid State Electron 16 773
Google Scholar
[77] Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 9642
Google Scholar
[78] Stolt L, Hedstrom J, Kessler J, Ruckh M, Velthaus K O, Schock H W 1993 Appl. Phys. Lett. 62 597
Google Scholar
[79] Gabor A M, Tuttle J R, Albin D S, Contreras M A, Noufi R, Hermann A M 1998 Appl. Phys. Lett. 65 198
[80] Contreras M A, Mansfield L M, Egaas B, Li J, Romero M, Noufi R, Rudigervoigt E, Mannstadt W 2012 37th IEEE Photovoltaic Specialists Conference, Seattle, June 19–24, 2011 p843
[81] Se to, John Y W 1975 J. Appl. Phys. 46 5247
Google Scholar
[82] Gloeckler M, Sites J R, Metzger W K 2005 J. Appl. Phys. 9 8
[83] Metzger W K, Gloeckler M 2005 J. Appl. Phys. 98 063701
Google Scholar
[84] Taretto K, Rau U 2008 J. Appl. Phys. 103 225
[85] Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovolt. 19 894
Google Scholar
[86] Sadewasser S, Abou-Ras D, Azulay D, Baier R, Balberg I, Cahen D, Cohen S, Gartsman K, Ganesan K, Kavalakkatt J 2011 Thin Solid Films 519 7341
Google Scholar
[87] Schuler S, Nishiwaki S, Beckmann J, Rega N, Lux-Steiner M C 2003 Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, May 19–24, 2002 p504
[88] Hetzer M J, Strzhemechny Y M, Gao M, Contreras M A, Brillson L J 2005 Appl. Phys. Lett. 86 162105
Google Scholar
[89] Lei C, Li C M, Rockett A, Robertson I M 2007 J. Appl. Phys. 101 499
[90] Abou-Ras D, Schaffer B, Schaffer M, Schmidt S S, Unold T 2012 Phys. Rev. Lett. 108 075502
Google Scholar
[91] Yin W J, Wu Y, Noufi R, Al-Jassim M, Yan Y 2013 Appl. Phys. Lett. 102 193905
Google Scholar
[92] Kaufmann C A, Caballero R, Unold T, Hesse R, Klenk R, Schorr S, Nichterwitz M, Schock H W 2009 Sol. Energy Mater. Sol. Cells 93 859
Google Scholar
[93] Grimmer H, Bollmann W, Warrington D H 1974 Acta Crystallogr. 30 197
Google Scholar
[94] Abou-Ras D, Schmidt S S, Caballero R, Unold T, Schock H W, Koch C T, Schaffer B, Schaffer M, Choi P P, Cojocaru-Mirédin O 2012 Adv. Energy Mater. 2 992
Google Scholar
[95] Ahn S J, Jung S, Gwak J, Cho A, Shin K, Yoon K, Park D, Cheong H, Yun J H 2010 Appl. Phys. Lett. 97 021905
Google Scholar
[96] Grossberg M, Krustok J, Timmo K, Altosaar M 2009 Thin Solid Films 517 2489
Google Scholar
[97] Choi S G, Zhao H Y, Persson C, Perkins C L, Donohue A L, To B, Norman A G, Li J, Repins I L 2012 J. Appl. Phys 111 033506
Google Scholar
[98] Katagiri H, Jimbo K, Maw W S, Oishi K, Takeuchi A 2009 Thin Solid Films 517 2455
Google Scholar
[99] Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 phys. stat. sol. 245 1772
Google Scholar
[100] Scragg J J, Dale P J, Peter L M 2009 Thin Solid Films 517 2481
Google Scholar
[101] Wei S H, Zhang S B 2005 J. Phys. Chem. Solids 66 1994
Google Scholar
[102] Wei S H, Zhang S B, Zunger A 1998 Appl. Phys. Lett. 72 1
Google Scholar
[103] Kumar Y B K, Bhaskar P U, Babu G S, Raja V S 2009 Phys. Stat. Sol. 207 149
[104] Wibowo R A, Kim W S, Lee E S, Munir B, Kim K H 2007 J. Phys. Chem. Solids 68 1908
Google Scholar
[105] Miyamoto Y, Tanaka K, Oonuki M, Moritake N, Uchiki H 2008 Sol. Energy Mater. Sol. Cells 47 596
[106] Altosaar M, Raudoja J, Timmo K, Danilson M, Grossberg M, Krustok J, Mellikov E 2008 Phys. Stat. Sol. 205 167
Google Scholar
[107] Oishi K, Saito G, Ebina K, Nagahashi M, Jimbo K, Maw W S, Katagiri H, Yamazaki M, Araki H, Takeuchi A 2008 Thin Solid Films 517 1449
Google Scholar
[108] Zhang X, Shi X, Ye W, Ma C, Wang C 2009 Appl. Phys. A-Mater. Sci. 94 381
Google Scholar
[109] Hones K, Zscherpel E, Scragg J, Siebentritt S 2009 Phys. Rev. B 404 4949
[110] Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522
Google Scholar
[111] Chen S, Yang J H, Gong X G, Walsh A, Wei S H 2010 Phys. Rev. B 81 245204
Google Scholar
[112] Chen S, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902
Google Scholar
[113] Nagoya A, Asahi R, Wahl R, Kresse G 2010 Phys. Rev. B 81 113202
Google Scholar
[114] Persson C, Zhao Y J, Lany S, Zunger A 2005 Phys. Rev. B 72 035211
Google Scholar
[115] Katagiri H, Saitoh K, Washio T, Shinohara H, Kurumadani T, Miyajima S 2001 Sol. Energy Mater. Sol. Cells 65 141
Google Scholar
[116] Tanaka T, Nagatomo T, Kawasaki D, Nishio M, Guo Q, Wakahara A, Yoshida A, Ogawa H 2005 J. Phys. Chem. Solids 66 1978
Google Scholar
[117] Kumar Y B K, Babu G S, Bhaskar P U, Raja V S 2009 Sol. Energy Mater. Sol. Cells 93 1230
Google Scholar
[118] Shinde N M, Dubal D P, Dhawale D S, Lokhande C D, Kim J H, Moon J H 2012 Mater. Res. Bull. 47 302
Google Scholar
[119] Tanaka K, Moritake N, Oonuki M, Uchiki H 2008 Jpn. J. Appl. Phys. 47 598
Google Scholar
[120] Prabhakar T, Jampana N 2011 Sol. Energy Mater. Sol. Cells 95 1001
Google Scholar
[121] Schmidt S S, Abouras D, Sadewasser S, Yin W, Feng C, Yan Y 2012 Phys. Rev. Lett. 109 6709
[122] Azulay D, Balberg I, Millo O 2012 Phys. Rev. Lett. 108 076603
Google Scholar
[123] Schmid D, Ruckh M, Schock H W 1996 Appl. Surf. Sci. 103 409
Google Scholar
[124] Yan Y, Jones K M, Abushama J, Young M, Asher S, Al-Jassim M M, Noufi R 2002 Appl. Phys. Lett. 81 1008
Google Scholar
[125] Yan Y, Noufi R, Al-Jassim M M 2006 Phys. Rev. Lett. 96 205501
Google Scholar
[126] Yin W J, Wu Y, Wei S H, Noufi R, Yan Y 2014 Adv. Energy Mater. 4 1
[127] Yin W J, Yang J H, Kang J, Yan Y, Wei S H 2015 J. Mater. Chem. A 3 8926
Google Scholar
[128] Best Research-Cell Efficiency Chart, Korea Research Institute of Chemical Technology and MIT https://www. nrel.gov/pv/cell-efficiency.html/[2019-11-20]
[129] Walsh A, Watson G W 2005 J. Solid State Chem. 178 1422
Google Scholar
[130] Walsh A, Payne D J, Egdell R G, Watson G W 2011 Chemi. Soc. Rev. 40 4455
Google Scholar
[131] Wei S H, Zunger A 1997 Phys. Rev. B 55 16
[132] Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701
Google Scholar
[133] Yu L, Kokenyesi R S, Keszler D A, Zunger A 2013 Adv. Energy Mater. 3 43
Google Scholar
[134] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395
Google Scholar
[135] Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y, Huang J 2014 Appl. Phys. Lett. 105 163508
Google Scholar
[136] Yin W J, Wei S H, Al-Jassim M M, Yan Y 2011 Appl. Phys. Lett. 99 142109
Google Scholar
[137] Brandt R E, Stevanovic V, Ginley D S, Buonassisi T 2015 Mrs Commun. 5 265
Google Scholar
[138] Walsh A, Zunger A 2017 Nat. Mater. 16 964
Google Scholar
[139] Seok S I, Gratzel M, Park N G 2018 Small 14 1704177
Google Scholar
[140] Wang R, Xue J J, Wang K L, Wang Z K, Luo Y Q, Fenning D, Xu G W, Nuryyeva S, Huang T Y, Zhao Y P, Yang J L, Zhu J H, Wang M H, Tan S, Yavuz I, Houk K N, Yang Y 2019 Science 366 1509
Google Scholar
[141] Gao F, Zhao Y, Zhang X W, You J B 2019 Adv. Energy Mater. 1902650
[142] Ni Z Y, Bao C X, Y. L, Jiang Q, Wu W Q, Chen S S, Dai X Z, Chen B, Hartweg B, Yu Z S, Holman Z, Huang J S 2020 Science 367 1352
Google Scholar
[143] Li J L, Yang J, Wu T, Wei S H 2019 J. Mater. Chem. C 7 4230
[144] Agiorgousis M L, Sun Y Y, Zeng H, Zhang S 2014 J. Am. Chem. Soc. 136 14570
Google Scholar
[145] Li W, SunY Y, Li I Q, Zhou Z H, Tang J F, Prezhdo O V 2018 J. Am. Chem. Soc. 140 15753
Google Scholar
[146] Wang J, Li W, Yin W J 2020 Adv. Mater. 32 1906115
Google Scholar
计量
- 文章访问数: 17041
- PDF下载量: 685
- 被引次数: 0