搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于滑动势能面的二维材料原子尺度摩擦行为的量化计算

史若宇 王林锋 高磊 宋爱生 刘艳敏 胡元中 马天宝

引用本文:
Citation:

基于滑动势能面的二维材料原子尺度摩擦行为的量化计算

史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝

Quantitative calculation of atomic-scale frictional behavior of two-dimensional material based on sliding potential energy surface

Shi Ruo-Yu, Wang Lin-Feng, Gao Lei, Song Ai-Sheng, Liu Yan-Min, Hu Yuan-Zhong, Ma Tian-Bao
PDF
导出引用
  • 近年来,二维材料优异的摩擦特性成为人们关注的焦点,然而目前缺乏理论上对其摩擦力进行快速、有效、精确的计算预测方法.本文提出采用密度泛函理论计算真实体系的滑动势能面,利用得到的数值型势能面替代传统的解析势函数,并结合Prandtl-Tomlinson模型,量化求解具有复杂形状势能面的真实二维材料体系的摩擦行为.基于该方法,揭示了原子力显微镜实验中观察到的石墨烯Moir纹超晶格结构的双周期黏-滑摩擦现象;理论预测了二维材料异质结构的层间超低摩擦现象,相对于同质材料,其静摩擦力和滑动摩擦力均成数量级降低,发现势能面起伏和驱动弹簧刚度均会影响层间相对滑动路径,进而对层间的摩擦行为产生影响.该方法同样可拓展到其他van der Waals作用主导的界面摩擦体系.
    The excellent tribological characteristics of two-dimensional (2D) materials have received great attention, however, how to effectively predict their frictions is still lacking. Here, we propose to obtain the sliding potential energy surface by density functional theory calculations, instead of simplified potential energy function. Thus it is able to solve the frictional behaviors of 2D materials with irregular complex potential energy surfaces. Firstly, we reveal the mechanism of dual-scale stick-slip behavior between a tip and a graphene/Ru(0001) heterostructure. With a dual-wavelength potential energy surface, we observe a similar frictional behavior to those captured in atomic force microscopy experiments, in which a significant long-range stick-slip sawtooth modulation emerges with a period coinciding with the Moir superlattice structure. Secondly, we discuss the interlayer frictions of 2D materials, including graphene/graphene, fluorinated graphene/fluorinated graphene, MoS2/MoS2, graphene/MoS2 and fluorinated graphene/MoS2. With sliding potential energy surface obtained by density functional theory calculations, the interlayer friction is estimated according to the Prandtl-Tomlinson model calculation method. Compared with the friction between homostructures, the friction between heterostructures is lowered by orders of magnitude, which could be attributed to its ultralow sliding potential barrier. The stick-slip instability could be observed in homostructure, while heterostructure exihibits smooth friction loops. The 2D sliding path between the layers is recorded in the sliding process, showing its dependence on both the potential energy barrier and the spring constant. The sliding path shift increases with the increase of potential energy barrier and the decrease of spring constant in the y direction. This method is also applicable to tribological systems with dominated interfacial van der Waals interaction.
      通信作者: 马天宝, mtb@mail.tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51422504,51505217,51527901)资助的课题.
      Corresponding author: Ma Tian-Bao, mtb@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51422504, 51505217, 51527901).
    [1]

    Tomlinson G A 1929 Phil. Mag. 7 905

    [2]

    Zhao Y P 2012 Surface and Interface Mechanics (Beijing:Science Press) p301 (in Chinese)[赵亚溥 2012 表面与界面物理力学(北京:科学出版社) 第301页]

    [3]

    Dong Y, Vadakkepatt A, Martini A 2011 Tribol. Lett. 44 367

    [4]

    Wang Z, Ma T, Hu Y, Xu L, Wang H 2015 Friction 3 170

    [5]

    Li Q, Dong Y, Martini A, Carpick R W 2011 Tribol. Lett. 43 369

    [6]

    Zheng X, Gao L, Yao Q, Li Q, Zhang M, Xie X, Qiao S, Wang G, Ma T, Di Z, Luo J, Wang X 2016 Nat. Commun. 7 13204

    [7]

    Maier S, Gnecco E, Baratoff A, Bennewitz R, Meyer E 2008 Phys. Rev. B 78 045432

    [8]

    Liu S, Wang H, Xu Q, Ma T, Yu G, Zhang C, Geng D, Yu Z, Zhang S, Wang W, Hu Y, Wang H, Luo J 2017 Nat. Commun. 8 14029

    [9]

    Wang L F, Ma T B, Hu Y Z, Zheng Q, Wang H, Luo J 2014 Nanotechnology 25 385701

    [10]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [11]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [12]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [13]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [14]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [15]

    Kresse G, Joubert D https://doi.org/10.1103/PhysRevB.59.1758 1999 Phys. Rev. B 59 1758

    [16]

    Geim A K, Grigorieva I V 2013 Nature 499 419

    [17]

    Zhu X, Yuan Q, Zhao Y P 2014 Nanoscale 6 5432

    [18]

    Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F, Gao H J 2009 Adv. Mater. 21 2777

    [19]

    Pan Y, Shi D, Gao H J 2007 Chin. Phys. 16 3151

    [20]

    Shi R, Gao L, Lu H, Li Q, Ma T, Guo H, Du S, Feng X, Zhang S, Liu Y, Cheng P, Hu Y, Gao H, Luo J 2017 2D Mater. 4 025079

    [21]

    Gao L, Liu Y, Ma T, Shi R, Hu Y, Luo J 2016 Appl. Phys. Lett. 108 261601

    [22]

    Filleter T, Bennewitz R 2010 Phys. Rev. B 81 155412

    [23]

    Hirano M, Shinjo K 1990 Phys. Rev. B 41 11837

  • [1]

    Tomlinson G A 1929 Phil. Mag. 7 905

    [2]

    Zhao Y P 2012 Surface and Interface Mechanics (Beijing:Science Press) p301 (in Chinese)[赵亚溥 2012 表面与界面物理力学(北京:科学出版社) 第301页]

    [3]

    Dong Y, Vadakkepatt A, Martini A 2011 Tribol. Lett. 44 367

    [4]

    Wang Z, Ma T, Hu Y, Xu L, Wang H 2015 Friction 3 170

    [5]

    Li Q, Dong Y, Martini A, Carpick R W 2011 Tribol. Lett. 43 369

    [6]

    Zheng X, Gao L, Yao Q, Li Q, Zhang M, Xie X, Qiao S, Wang G, Ma T, Di Z, Luo J, Wang X 2016 Nat. Commun. 7 13204

    [7]

    Maier S, Gnecco E, Baratoff A, Bennewitz R, Meyer E 2008 Phys. Rev. B 78 045432

    [8]

    Liu S, Wang H, Xu Q, Ma T, Yu G, Zhang C, Geng D, Yu Z, Zhang S, Wang W, Hu Y, Wang H, Luo J 2017 Nat. Commun. 8 14029

    [9]

    Wang L F, Ma T B, Hu Y Z, Zheng Q, Wang H, Luo J 2014 Nanotechnology 25 385701

    [10]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [11]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [12]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [13]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [14]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [15]

    Kresse G, Joubert D https://doi.org/10.1103/PhysRevB.59.1758 1999 Phys. Rev. B 59 1758

    [16]

    Geim A K, Grigorieva I V 2013 Nature 499 419

    [17]

    Zhu X, Yuan Q, Zhao Y P 2014 Nanoscale 6 5432

    [18]

    Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F, Gao H J 2009 Adv. Mater. 21 2777

    [19]

    Pan Y, Shi D, Gao H J 2007 Chin. Phys. 16 3151

    [20]

    Shi R, Gao L, Lu H, Li Q, Ma T, Guo H, Du S, Feng X, Zhang S, Liu Y, Cheng P, Hu Y, Gao H, Luo J 2017 2D Mater. 4 025079

    [21]

    Gao L, Liu Y, Ma T, Shi R, Hu Y, Luo J 2016 Appl. Phys. Lett. 108 261601

    [22]

    Filleter T, Bennewitz R 2010 Phys. Rev. B 81 155412

    [23]

    Hirano M, Shinjo K 1990 Phys. Rev. B 41 11837

  • [1] 高金玮, 陈璐, 李旭洪, 史俊勤, 曹腾飞, 范晓丽. 具有磁弹耦合的本征多铁半导体: 单分子层MoTeX (X = F, Cl, Br, I).  , 2024, 73(19): 197501. doi: 10.7498/aps.73.20240829
    [2] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件.  , 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [3] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展.  , 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [4] 刘宁, 刘肯, 朱志宏. 集成二维材料非线性光学特性研究进展.  , 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [5] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展.  , 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [6] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质.  , 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [7] 黄新玉, 韩旭, 陈辉, 武旭, 刘立巍, 季威, 王业亮, 黄元. 二维材料解理技术新进展及展望.  , 2022, 71(10): 108201. doi: 10.7498/aps.71.20220030
    [8] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展.  , 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [9] 刘天瑶, 刘灿, 刘开辉. 表界面调控米级二维单晶原子制造.  , 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [10] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控.  , 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [11] 何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国. 基于二维材料的自旋-轨道矩研究进展.  , 2021, 70(12): 127501. doi: 10.7498/aps.70.20210004
    [12] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应.  , 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [13] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法.  , 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [14] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控.  , 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [15] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究.  , 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [16] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展.  , 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [17] 徐依全, 王聪. 基于二维材料的全光器件.  , 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [18] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展.  , 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [19] 栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡. 锑烯吸附金属Li原子的密度泛函研究.  , 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [20] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元. 新型机械解理方法在二维材料研究中的应用.  , 2018, 67(21): 218201. doi: 10.7498/aps.67.20181636
计量
  • 文章访问数:  7136
  • PDF下载量:  345
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-04
  • 修回日期:  2017-07-11
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map