Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A sensing method based on InSb grating coupled terahertz surface plasmon polariton resonance

Chen Yi-Cheng Zhang Cheng-Long Zhang Li-Chao Qi Zhi-Mei

Citation:

A sensing method based on InSb grating coupled terahertz surface plasmon polariton resonance

Chen Yi-Cheng, Zhang Cheng-Long, Zhang Li-Chao, Qi Zhi-Mei
PDF
HTML
Get Citation
  • A grating-coupled terahertz (THz) surface plasmon polariton (SPP) resonant biochemical sensing structure is designed with simulation, which can be easily prepared by etching a submillimeter grating on the surface of indium antimonide (InSb) substrate. The simulation results based on the phase matching equation show that when the TM-polarized broadband terahertz collimated beam is incident on the InSb grating at a 30° angle, the low-frequency SPP and high-frequency SPP with opposite propagation directions can be simultaneously excited by the –1st and +1st order diffraction beams of the grating, respectively. Since the low-frequency SPP is easy to accurately measure with a commercial THz time-domain spectroscopy devices, the dependence of the resonance characteristics and sensing characteristics of low-frequency SPP on the grating structure parameters is systematically simulated in this paper. The simulation results show that the refractive-index sensitivity of the InSb grating-coupled THz-SPP resonant sensor chip decreases with the increase of the grating period, and is 1.05 THz/RIU at a grating period of 120 μm and an incident angle of 30°. Under these conditions, the sensor chip cannot make a detectable response to the monolayer adsorption of biomolecules, because the evanescent field penetration depth of the low-frequency SPP is much greater than the biomolecular size, resulting in insufficient field-biomolecular interaction at the surface. In order to detect biomolecules, a sensitivity enhancement method based on porous thin films is proposed and analyzed with simulation. The porous films enable not only to enrich biomolecules, but also to extend the interaction between THz-SPP and biomolecules from the molecular size to the entire film thickness, thereby improving the sensitivity of the sensor to biomolecular adsorption. Taking tyrosine adsorption as an example, the simulation results show that when the InSb grating is covered with a porous polymethyl methacrylate (PMMA) film with a thickness of 120 μm and a porosity of 0.4, the sensor sensitivity to tyrosine adsorption is 0.39 THz/unit volume fraction.
      Corresponding author: Qi Zhi-Mei, zhimei-qi@mail.ie.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFB3200100) and the National Natural Science Foundation of China (Grant Nos. 62121003, 61931018, 61871365).
    [1]

    张喆, 柳倩, 祁志美 2013 62 060703Google Scholar

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703Google Scholar

    [2]

    Zhang C L, Liu Z W, Cai C, Yang Z H, Qi Z M 2022 Opt. Lett. 47 4155Google Scholar

    [3]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442Google Scholar

    [4]

    刘濮鲲, 黄铁军 2020 红外与毫米波学报 39 169Google Scholar

    Liu P K, Huang T J 2020 J. Infrared Millim. Waves 39 169Google Scholar

    [5]

    Pendry J B, Martín-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [6]

    Hibbins A P, Evans B R, Sambles J R 2005 Science 308 670Google Scholar

    [7]

    Williams C R, Andrews S R, Maier S A, Fernández-Domínguez A I, Martín-Moreno L, García-Vidal F J 2008 Nat. Photonics 2 175Google Scholar

    [8]

    Ng B H, Wu J F, Hanham S M, Fernández-Domínguez A I, Klein N, Liew Y F, Breese M B H, Hong M H, Maier S A 2013 Adv. Opt. Mater. 1 543Google Scholar

    [9]

    Ng B H, Hanham S M, Wu J F, Fernández-Domínguez A I, Klein N, Liew Y F, Breese M B H, Hong M H, Maier S A 2014 ACS Photonics 1 1059Google Scholar

    [10]

    Shen X P, Cui T J 2014 Laser Photonics Rev. 8 137Google Scholar

    [11]

    Chochol J, Postava K, Čada M, Vanwolleghem M, Halagačka L, Lampin J F, Pištora J 2016 AIP Adv. 6 115021Google Scholar

    [12]

    Marschall N, Fischer B, Queisser H J 1971 Phy. Rev. Lett. 27 95Google Scholar

    [13]

    Cheng B H, Ye Y S, Lan Y C, Tsai D P 2017 Sci. Rep. 7 6443Google Scholar

    [14]

    Chochol J, Postava K, Cada M, Pistora J 2017 Sci. Rep. 7 13117Google Scholar

    [15]

    Isaac T H, Barnes W L, Hendry E 2008 Appl. Phys. Lett. 93 241115Google Scholar

    [16]

    Madelung O 1991 Semiconductors: Group IV Elements and III-V Compounds (Berlin, Heidelberg: Springer) p147

    [17]

    Shibayama J, Shimizu K, Yamauchi J, Nakano H 2016 J. Lightwave Technol. 34 2518Google Scholar

    [18]

    Tao H, Chieffo L R, Brenckle M A, Siebert S M, Liu M K, Strikwerda A C, Fan K B, Kaplan D L, Zhang X, Averitt R D, Omenetto F C 2011 Adv. Mater. 23 3197Google Scholar

    [19]

    Wang Y, Cui Z J, Zhu D Y, Wang X M, Chen S G, Nie P C 2019 Opt. Express 27 14133Google Scholar

    [20]

    Nie P C, Zhu D Y, Cui Z J, Qu F F, Lin L, Wang Y 2020 Sens. Actuator B-Chem. 307 127642Google Scholar

    [21]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克斌, 金飚兵, 陈健, 吴培亨 2023 72 128701Google Scholar

    Xiang X, Ma H, Wang L, Tian D, Zhang W, Zhang C, Wu J, Fan K, Jin B, Chen J, Wu P 2023 Acta Phys. Sin. 72 128701Google Scholar

    [22]

    岳伟伟, 王卫宁, 赵国忠, 张存林, 闫海涛 2005 54 3094Google Scholar

    Yue W W, Wang W N, Zhao G Z, Zhang C L, Yan H T 2005 Acta Phys. Sin. 54 3094Google Scholar

    [23]

    王国阳, 白志晨, 王佳慧, 苏波, 张存林 2021 光谱学与光谱分析 41 1678Google Scholar

    Wang G Y, Bai Z C, Wang J H, Su B, Zhang C L 2021 Spectrosc. Spectral Anal. 41 1678Google Scholar

  • 图 1  使用Drude模型计算的InSb介电常数

    Figure 1.  InSb dielectric constant calculated with the Drude model.

    图 2  光栅耦合原理示意图

    Figure 2.  Schematic diagram of grating coupling principle.

    图 3  掺杂型InSb色散曲线

    Figure 3.  Dispersion curve of doped InSb.

    图 4  低频SPP与高频SPP的共振频率随光栅周期的变化

    Figure 4.  Resonance frequency variation curves of low-frequency SPP and high-frequency SPP with grating period.

    图 5  光栅高度为10 μm、占空比为0.4的条件下, THz反射谱随光栅周期的变化

    Figure 5.  Variation of THz reflection spectrum with grating period under the condition of a grating height of 10 μm and a duty cycle of 0.4.

    图 6  (a) 光栅周期为120 μm时共振频率随介质折射率的变化, 及线性拟合得到的折射率灵敏度; (b) 折射率灵敏度随光栅周期的变化

    Figure 6.  6. (a) Resonance frequency variation curve with medium refractive index when the grating period is 120 μm, and the refractive index sensitivity obtained by linear fitting; (b) variation curve of refractive index sensitivity with grating period.

    图 7  光栅表面吸附10 nm酪氨酸与未吸附时的THz反射谱

    Figure 7.  THz reflection spectrum of 10 nm tyrosine adsorbed on grating surface and without adsorption.

    图 8  InSb光栅表面覆盖多孔PMMA薄膜制备流程示意图

    Figure 8.  Schematic diagram of the preparation process of InSb grating covered with porous PMMA film.

    图 9  多孔PMMA等效折射率n随孔隙率P的变化

    Figure 9.  Variation curve of equivalent refractive index n of porous PMMA with porosity P.

    图 10  在厚度h = 25 μm情况下的仿真结果 (a) 折射率灵敏度随多孔PMMA孔隙率P的变化; (b) 介质层平均电场模随多孔PMMA孔隙率P的变化; (c) 不同孔隙率下的场分布示意图; (d) 不同孔隙率下介质层与多孔PMMA层界面处的电场强度; 其中图(b), (c), (d)均为介质层折射率$ {n}_{{\mathrm{d}}}=1 $的结果

    Figure 10.  Simulation results in the case of h = 25 μm: (a) Variation curve of refractive index sensitivity with porosity P of porous PMMA; (b) variation curve of average electric field mode of dielectric layer with porosity P of porous PMMA; (c) schematic diagram of field distribution under different porosity; (d) the electric field intensity curve at the interface between the dielectric layer and the porous PMMA layer under different porosity. Note: panels (b), (c), (d) are the results under the condition that the refractive index of the dielectric layer $ {n}_{{\mathrm{d}}}=1 $.

    图 11  在孔隙率P = 0.4情况下的仿真结果 (a) 折射率灵敏度随多孔PMMA厚度h的变化; (b) 介质层平均电场模随多孔PMMA厚度h的变化; (c) 不同厚度下的场分布示意图; (d) 不同厚度下介质层与多孔PMMA层界面处的电场强度曲线; 其中图(b), (c), (d)均为介质层折射率$ {n}_{{\mathrm{d}}}=1 $的结果

    Figure 11.  Simulation results in the case of P = 0.4: (a) Variation curve of refractive index sensitivity with porous PMMA thickness h; (b) variation curve of average electric field mode of dielectric layer with thickness h of porous PMMA; (c) schematic diagram of field distribution under different thickness; (d) the electric field intensity curves at the interface between the dielectric layer and the porous PMMA layer under different thickness. Note: panels (b), (c), (d) are the results of the refractive index of the dielectric layer $ {n}_{{\mathrm{d}}}=1 $.

    图 12  (a) 不同孔隙率下多孔PMMA吸附酪氨酸体积分数$ {\eta }_{3}= $0, 0.05, 0.10, 0.15, 0.20时的等效折射率n; (b) $ {\eta }_{3} $由0变为0.2时, 不同孔隙率多孔PMMA的等效折射率变化量$ \Delta n $

    Figure 12.  (a) Equivalent refractive index n when the volume fraction of tyrosine adsorbed by porous PMMA $ {\eta }_{3} $ is 0, 0.05, 0.10, 0.15 and 0.20 under different porosity; (b) the change of equivalent refractive index $ \Delta n $ of porous PMMA with different porosity when $ {\eta }_{3} $ changing from 0 to 0.2.

    图 13  在孔隙率P = 0.4条件下的仿真结果 (a) 覆盖厚度为40 μm的多孔PMMA, 传感器吸附不同体积分数酪氨酸的反射光谱; (b) 覆盖厚度为40 μm的多孔PMMA, 传感器吸附不同体积分数酪氨酸的共振频率变化曲线, 及线性拟合得到的吸附灵敏度; (c) 覆盖厚度为120 μm的多孔PMMA, 传感器吸附不同体积分数酪氨酸的反射光谱; (d) 覆盖20—240 μm厚度的多孔PMMA, 传感器吸附灵敏度变化曲线

    Figure 13.  Simulation results in the case of porosity P = 0.4: (a) The reflection spectra of the sensor after adsorption of tyrosine with different volume fractions when the thickness of the covered porous PMMA is 40 μm; (b) the resonance frequency curve of the sensor after adsorption of tyrosine with different volume fractions and the adsorption sensitivity obtained by linear fitting when the thickness of the covered porous PMMA is 40 μm; (c) the reflection spectra of the sensor after adsorption of tyrosine with different volume fractions when the thickness of the covered porous PMMA is 40 μm; (d) variation curves of sensor adsorption sensitivity when the thickness of covered porous PMMA is 20–240 μm.

    Baidu
  • [1]

    张喆, 柳倩, 祁志美 2013 62 060703Google Scholar

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703Google Scholar

    [2]

    Zhang C L, Liu Z W, Cai C, Yang Z H, Qi Z M 2022 Opt. Lett. 47 4155Google Scholar

    [3]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442Google Scholar

    [4]

    刘濮鲲, 黄铁军 2020 红外与毫米波学报 39 169Google Scholar

    Liu P K, Huang T J 2020 J. Infrared Millim. Waves 39 169Google Scholar

    [5]

    Pendry J B, Martín-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [6]

    Hibbins A P, Evans B R, Sambles J R 2005 Science 308 670Google Scholar

    [7]

    Williams C R, Andrews S R, Maier S A, Fernández-Domínguez A I, Martín-Moreno L, García-Vidal F J 2008 Nat. Photonics 2 175Google Scholar

    [8]

    Ng B H, Wu J F, Hanham S M, Fernández-Domínguez A I, Klein N, Liew Y F, Breese M B H, Hong M H, Maier S A 2013 Adv. Opt. Mater. 1 543Google Scholar

    [9]

    Ng B H, Hanham S M, Wu J F, Fernández-Domínguez A I, Klein N, Liew Y F, Breese M B H, Hong M H, Maier S A 2014 ACS Photonics 1 1059Google Scholar

    [10]

    Shen X P, Cui T J 2014 Laser Photonics Rev. 8 137Google Scholar

    [11]

    Chochol J, Postava K, Čada M, Vanwolleghem M, Halagačka L, Lampin J F, Pištora J 2016 AIP Adv. 6 115021Google Scholar

    [12]

    Marschall N, Fischer B, Queisser H J 1971 Phy. Rev. Lett. 27 95Google Scholar

    [13]

    Cheng B H, Ye Y S, Lan Y C, Tsai D P 2017 Sci. Rep. 7 6443Google Scholar

    [14]

    Chochol J, Postava K, Cada M, Pistora J 2017 Sci. Rep. 7 13117Google Scholar

    [15]

    Isaac T H, Barnes W L, Hendry E 2008 Appl. Phys. Lett. 93 241115Google Scholar

    [16]

    Madelung O 1991 Semiconductors: Group IV Elements and III-V Compounds (Berlin, Heidelberg: Springer) p147

    [17]

    Shibayama J, Shimizu K, Yamauchi J, Nakano H 2016 J. Lightwave Technol. 34 2518Google Scholar

    [18]

    Tao H, Chieffo L R, Brenckle M A, Siebert S M, Liu M K, Strikwerda A C, Fan K B, Kaplan D L, Zhang X, Averitt R D, Omenetto F C 2011 Adv. Mater. 23 3197Google Scholar

    [19]

    Wang Y, Cui Z J, Zhu D Y, Wang X M, Chen S G, Nie P C 2019 Opt. Express 27 14133Google Scholar

    [20]

    Nie P C, Zhu D Y, Cui Z J, Qu F F, Lin L, Wang Y 2020 Sens. Actuator B-Chem. 307 127642Google Scholar

    [21]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克斌, 金飚兵, 陈健, 吴培亨 2023 72 128701Google Scholar

    Xiang X, Ma H, Wang L, Tian D, Zhang W, Zhang C, Wu J, Fan K, Jin B, Chen J, Wu P 2023 Acta Phys. Sin. 72 128701Google Scholar

    [22]

    岳伟伟, 王卫宁, 赵国忠, 张存林, 闫海涛 2005 54 3094Google Scholar

    Yue W W, Wang W N, Zhao G Z, Zhang C L, Yan H T 2005 Acta Phys. Sin. 54 3094Google Scholar

    [23]

    王国阳, 白志晨, 王佳慧, 苏波, 张存林 2021 光谱学与光谱分析 41 1678Google Scholar

    Wang G Y, Bai Z C, Wang J H, Su B, Zhang C L 2021 Spectrosc. Spectral Anal. 41 1678Google Scholar

  • [1] Yang Xiao-Jie, Xu Hui, Xu Hai-Ye, Li Ming, Yu Hong-Fei, Cheng Yu-Xuan, Hou Hai-Liang, Chen Zhi-Quan. Sensing and slow light applications of graphene plasmonic terahertz structure. Acta Physica Sinica, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [2] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [3] Sun Zhan-Shuo, Wang Xin, Wang Jun-Lin, Fan Bo, Zhang Yü, Feng Yao. Sensing and slow light properties of dual-band terahertz metamaterials based on electromagnetically induced transparency-like. Acta Physica Sinica, 2022, 71(13): 138101. doi: 10.7498/aps.71.20212163
    [4] Yang Ze-Hao, Liu Zi-Wei, Yang Bo, Zhang Cheng-Long, Cai Chen, Qi Zhi-Mei. Performance simulation of terahertz waveguide resonance biochemical sensor based on nanoporous gold films. Acta Physica Sinica, 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [5] Wang Xin, Wang Jun-Lin. Refractive index sensing characteristics of electromagnetic metamaterial absorber in terahertz band. Acta Physica Sinica, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [6] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [7] Zhang Quan-Zhi, Zhang Lei-Yu, Ma Fang-Fang, Wang You-Nian. Cryogenic etching of porous material. Acta Physica Sinica, 2021, 70(9): 098104. doi: 10.7498/aps.70.20202245
    [8] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a probe based on spoof surface plasmons. Acta Physica Sinica, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [9] Zhang Wen-Jun, Gao Long, Wei Hong, Xu Hong-Xing. Modulation of propagating surface plasmons. Acta Physica Sinica, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [10] Geng Yi-Fei, Wang Zhu-Ning, Ma Yao-Guang, Gao Fei. Topological surface plasmon polaritons. Acta Physica Sinica, 2019, 68(22): 224101. doi: 10.7498/aps.68.20191085
    [11] Shu Fang-Zhou, Fan Ren-Hao, Wang Jia-Nan, Peng Ru-Wen, Wang Mu. Advances in dynamically tunable plasmonic materials and devices. Acta Physica Sinica, 2019, 68(14): 147303. doi: 10.7498/aps.68.20190469
    [12] Wang Chong, Xing Qiao-Xia, Xie Yuan-Gang, Yan Hu-Gen. Spectroscopic studies of plasmons in topological materials. Acta Physica Sinica, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [13] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [14] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [15] Chen Jun-Xiang, Yu Ji-Dong, Geng Hua-Yun, He Hong-Liang. Temperature and pressure calculation of porous materials. Acta Physica Sinica, 2017, 66(5): 056401. doi: 10.7498/aps.66.056401
    [16] Zhang Zhen-Qing, Lu Hai, Wang Shao-Hua, Wei Ze-Yong, Jiang Hai-Tao, Li Yun-Hui. Optical Tamm state and related lasing effect enhanced by planar plasmonic metamaterials. Acta Physica Sinica, 2015, 64(11): 114202. doi: 10.7498/aps.64.114202
    [17] Yang Shu-Min, Han Wei, Gu Jian-Jun, Li Hai-Tao, Qi Yun-Kai. Preparation and study of anodic alumina thin films with rainbow rings. Acta Physica Sinica, 2015, 64(7): 076102. doi: 10.7498/aps.64.076102
    [18] Wang Wen-Jie, Wang Jia-Fu, Yan Ming-Bao, Lu Lei, Ma Hua, Qu Shao-Bo, Chen Hong-Ya, Xu Cui-Lian. Ultra-thin multiband metamaterial absorber based on multi-order plasmon resonances. Acta Physica Sinica, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [19] Liu Pei-Sheng. Analyses of buckling failure mode for porous materials under compression. Acta Physica Sinica, 2010, 59(12): 8801-8806. doi: 10.7498/aps.59.8801
    [20] Liu Pei-Sheng. Analysis of shearing failure mode for porous materials under compression. Acta Physica Sinica, 2010, 59(7): 4849-4856. doi: 10.7498/aps.59.4849
Metrics
  • Abstract views:  1935
  • PDF Downloads:  50
  • Cited By: 0
Publishing process
  • Received Date:  03 December 2023
  • Accepted Date:  04 March 2024
  • Available Online:  08 March 2024
  • Published Online:  05 May 2024

/

返回文章
返回
Baidu
map