-
The diffraction limit of light greatly limits the development of conventional optical devices, which are difficult to be miniaturized and integrated with high density. Surface plasmons, electromagnetic modes at the metal-dielectric interface, can concentrate light into deep subwavelength dimensions, enabling the manipulation of light at the nanometer scale. Surface plasmons can be used as information carrier to transmit and process optical signals beyond the diffraction limit. Therefore, nanodevices based on surface plasmons have received much attention. By modulating surface plasmons, the modulation of optical signals at nanoscale can be realized, which is important for the development of on-chip integrated nanophotonic circuits and optical information technology. In this article, we review the modulations of propagating surface plasmons and their applications in nano-optical modulators. The wave vector of propagating surface plasmons is very sensitive to the dielectric function of the metal and the environment. By tuning the dielectric function of the metal and/or the surrounding medium, both the real and imaginary part of the wave vector of surface plasmons can be modified, leading to the modulation of the phase and propagation length of surface plasmons and thereby modulating the intensity of optical signals. We first introduce the basic principles of different types of modulations, including all-optical modulation, thermal modulation, electrical modulation, and magnetic modulation. The all-optical modulation can be achieved by modulating the polarization and phase of input light, pumping optical materials, changing the dielectric function of metal by control light, and manipulating a nanoparticle by optical force to modulate the scattering of surface plasmons. The modulation based on thermal effect depends on thermo-optic materials and phase-change materials, and the temperature change can be triggered by photothermal effect or electrical heating. For electrically controlled modulation, Pockels electro-optic effect and Kerr electro-optic effect can be employed. Electrical modulation can also be realized by controlling the carrier concentration of semiconductors or graphene, using electrochromatic materials, and nanoelectromechanical control of the waveguide. The modulation of surface plasmons by magnetic field relies on magneto-optic materials. We review recent research progresses of modulating propagating surface plasmons by these methods, and analyze the performances of different types of plasmonic modulators, including operation wavelength, modulation depth or extinction ratio, response time or modulation frequency, and insertion loss. Finally, a brief conclusion and outlook is presented.
-
Keywords:
- surface plasmons /
- nano-optical modulators /
- plasmonic waveguides
[1] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
Google Scholar
[2] Ozbay E 2006 Science 311 189
Google Scholar
[3] Schuller J A, Barnard E S, Cai W S, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193
Google Scholar
[4] Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83
Google Scholar
[5] Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H, Xu H X 2018 Chem. Rev. 118 2882
Google Scholar
[6] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp1–223
[7] Sorger V J, Oulton R F, Ma R M, Zhang X 2012 MRS Bull. 37 728
Google Scholar
[8] Mayer K M, Hafner J H 2011 Chem. Rev. 111 3828
Google Scholar
[9] Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357
Google Scholar
[10] Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318
Google Scholar
[11] Linic S, Christopher P, Ingram D B 2011 Nat. Mater. 10 911
Google Scholar
[12] Yao Y, Kats M A, Genevet P, Yu N F, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257
Google Scholar
[13] Hsiao V K S, Zheng Y B, Juluri B K, Huang T J 2008 Adv. Mater. 20 3528
Google Scholar
[14] Guo P J, Schaller R D, Ketterson J B, Chang R P H 2016 Nat. Photon. 10 267
Google Scholar
[15] Stockhausen V, Martin P, Ghilane J, Leroux Y, Randriamahazaka H, Grand J, Felidj N, Lacroix J C 2010 J. Am. Chem. Soc. 132 10224
Google Scholar
[16] Jiang N N, Shao L, Wang J F 2014 Adv. Mater. 26 3282
Google Scholar
[17] Weeber J C, Krenn J R, Dereux A, Lamprecht B, Lacroute Y, Goudonnet J P 2001 Phys. Rev. B 64 045411
Google Scholar
[18] Dionne J A, Sweatlock L A, Atwater H A, Polman A 2006 Phys. Rev. B 73 035407
Google Scholar
[19] Briggs R M, Grandidier J, Burgos S P, Feigenbaum E, Atwater H A 2010 Nano Lett. 10 4851
Google Scholar
[20] Pan D, Wei H, Jia Z L, Xu H X 2014 Sci. Rep. 4 4993
[21] Zhang S P, Wei H, Bao K, Håkanson U, Halas N J, Nordlander P, Xu H X 2011 Phys. Rev. Lett. 107 096801
Google Scholar
[22] Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J, Xu H X 2010 Nano Lett. 10 1950
Google Scholar
[23] Wei H, Pan D, Xu H X 2015 Nanoscale 7 19053
Google Scholar
[24] Gao L, Chen L, Wei H, Xu H X 2018 Nanoscale 10 11923
Google Scholar
[25] Pan D, Wei H, Gao L, Xu H X 2016 Phys. Rev. Lett. 117 166803
Google Scholar
[26] Wei H, Li Z P, Tian X R, Wang Z X, Cong F Z, Liu N, Zhang S P, Nordlander P, Halas N J, Xu H X 2011 Nano Lett. 11 471
Google Scholar
[27] Li Z P, Zhang S P, Halas N J, Nordlander P, Xu H X 2011 Small 7 593
Google Scholar
[28] Pan D, Wei H, Xu H X 2013 Opt. Express 21 9556
Google Scholar
[29] Fu Y L, Hu X Y, Lu C C, Yue S, Yang H, Gong Q H 2012 Nano Lett. 12 5784
Google Scholar
[30] Wang Y L, Li T, Wang L, He H, Li L, Wang Q J, Zhu S N 2014 Laser Photon. Rev. 8 L47
Google Scholar
[31] Wei H, Wang Z X, Tian X R, Käll M, Xu H X 2011 Nat. Commum. 2 387
Google Scholar
[32] Wei H, Ratchford D, Li X Q, Xu H X, Shih C K 2009 Nano Lett. 9 4168
Google Scholar
[33] Li Q, Wei H, Xu H X 2014 Chin. Phys. B 23 097302
Google Scholar
[34] Pacifici D, Lezec H J, Atwater H A 2007 Nat. Photon. 1 402
Google Scholar
[35] Grandidier J, des Francs G C, Massenot S, Bouhelier A, Markey L, Weeber J C, Finot C, Dereux A 2009 Nano Lett. 9 2935
Google Scholar
[36] Liu N, Wei H, Li J, Wang Z X, Tian X R, Pan A L, Xu H X 2013 Sci. Rep. 3 1967
Google Scholar
[37] Ambati M, Nam S H, Ulin Avila E, Genov D A, Bartal G, Zhang X 2008 Nano Lett. 8 3998
Google Scholar
[38] de Leon I, Berini P 2010 Nat. Photon. 4 382
Google Scholar
[39] Krasavin A V, Vo T P, Dickson W, Bolger P M, Zayats A V 2011 Nano Lett. 11 2231
Google Scholar
[40] Tao J, Wang Q J, Huang X G 2011 Plasmonics 6 753
Google Scholar
[41] Lu H, Liu X M, Wang L R, Gong Y K, Mao D 2011 Opt. Express 19 2910
Google Scholar
[42] Pu M B, Yao N, Hu C G, Xin X C, Zhao Z Y, Wang C T, Luo X G 2010 Opt. Express 18 21030
Google Scholar
[43] Marder S R, Kippelen B, Jen A K Y, Peyghambarian N 1997 Nature 388 845
Google Scholar
[44] Chen J J, Li Z, Yue S, Gong Q H 2011 Nano Lett. 11 2933
Google Scholar
[45] Zhang L, Shi J, Yang Z, Huang M M, Chen Z J, Gong Q H, Cao S K 2008 Polymer 49 2107
Google Scholar
[46] Irie M, Fukaminato T, Matsuda K, Kobatake S 2014 Chem. Rev. 114 12174
Google Scholar
[47] Zhang C, Yan Y L, Zhao Y S, Yao J N 2014 Acc. Chem. Res. 47 3448
Google Scholar
[48] Pala R A, Shimizu K T, Melosh N A, Brongersma M L 2008 Nano Lett. 8 1506
Google Scholar
[49] Großmann M, Klick A, Lemke C, Falke J, Black M, Fiutowski J, Goszczak A J, Sobolewska E, Zillohu A U, Hedayati M K, Rubahn H G, Faupel F, Elbahri M, Bauer M 2015 ACS Photon. 2 1327
Google Scholar
[50] MacDonald K F, Sámson Z L, Stockman M I, Zheludev N I 2009 Nat. Photon. 3 55
[51] Li Z P, Käll M, Xu H X 2008 Phys. Rev. B 77 085412
Google Scholar
[52] Svedberg F, Li Z P, Xu H X, Käll M 2006 Nano Lett. 6 2639
Google Scholar
[53] Shalin A S, Ginzburg P, Belov P A, Kivshar Y S, Zayats A V 2014 Laser Photon. Rev. 8 131
Google Scholar
[54] Okamoto T, Kamiyama T, Yamaguchi I 1993 Opt. Lett. 18 1570
Google Scholar
[55] Gosciniak J, Bozhevolnyi S I 2013 Sci. Rep. 3 1803
Google Scholar
[56] Zhang Z Y, Zhao P, Lin P, Sun F G 2006 Polymer 47 4893
Google Scholar
[57] Weeber J C, Hassan K, Saviot L, Dereux A, Boissière C, Durupthy O, Chaneac C, Burov E, Pastouret A 2012 Opt. Express 20 27636
Google Scholar
[58] Padmaraju K, Logan D F, Zhu X L, Ackert J J, Knights A P, Bergman K 2013 Opt. Express 21 14342
Google Scholar
[59] Nikolajsen T, Leosson K, Bozhevolnyi S I 2004 Appl. Phys. Lett. 85 5833
Google Scholar
[60] Gosciniak J, Markey L, Dereux A, Bozhevolnyi S I 2012 Opt. Express 20 16300
Google Scholar
[61] Gosciniak J, Bozhevolnyi S I, Andersen T B, Volkov V S, Kjelstrup Hansen J, Markey L, Dereux A 2010 Opt. Express 18 1207
Google Scholar
[62] Gagnon G, Lahoud N, Mattiussi G A, Berini P 2006 J. Lightw. Technol. 24 4391
Google Scholar
[63] Gosciniak J, Markey L, Dereux A, Bozhevolnyi S I 2012 Nanotechnology 23 444008
Google Scholar
[64] Tang J, Liu Y R, Zhang L J, Fu X C, Xue X M, Qian G, Zhao N, Zhang T 2018 Micromachines 9 369
Google Scholar
[65] Lereu A L, Passian A, Goudonnet J P, Thundat T, Ferrell T L 2005 Appl. Phys. Lett. 86 154101
Google Scholar
[66] Kaya S, Weeber J C, Zacharatos F, Hassan K, Bernardin T, Cluzel B, Fatome J, Finot C 2013 Opt. Express 21 22269
Google Scholar
[67] Weeber J C, Bernardin T, Nielsen M G, Hassan K, Kaya S, Fatome J, Finot C, Dereux A, Pleros N 2013 Opt. Express 21 27291
Google Scholar
[68] Li Q, Chen L, Xu H X, Liu Z W, Wei H 2019 ACS Photon. http://dx.doi.org/10.1021/acsphotonics.9b00711
[69] Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M 2008 Nat. Mater. 7 972
Google Scholar
[70] Wuttig M, Yamada N 2007 Nat. Mater. 6 824
Google Scholar
[71] Zalba B, Marı́n J M, Cabeza L F, Mehling H 2003 Appl. Therm. Eng. 23 251
Google Scholar
[72] Krasavin A V, Zheludev N I 2004 Appl. Phys. Lett. 84 1416
Google Scholar
[73] Markov P, Appavoo K, Haglund R F, Weiss S M 2015 Opt. Express 23 6878
Google Scholar
[74] Jostmeier T, Mangold M, Zimmer J, Karl H, Krenner H J, Ruppert C, Betz M 2016 Opt. Express 24 17321
Google Scholar
[75] Sweatlock L A, Diest K 2012 Opt. Express 20 8700
Google Scholar
[76] Rudé M, Simpson R E, Quidant R, Pruneri V, Renger J 2015 ACS Photon. 2 669
Google Scholar
[77] Cai W S, White J S, Brongersma M L 2009 Nano Lett. 9 4403
Google Scholar
[78] Didomenico M, Wemple S H 1969 J. Appl. Phys. 40 720
Google Scholar
[79] Clark N A, Lagerwall S T 1980 Appl. Phys. Lett. 36 899
Google Scholar
[80] Soref R A, Bennett B R 1987 IEEE J. Quantum Electron. 23 123
Google Scholar
[81] Schildkraut J S 1988 Appl. Opt. 27 4587
Google Scholar
[82] Jung C, Yee S, Kuhn K 1995 Appl. Opt. 34 946
Google Scholar
[83] Jiang Y, Cao Z Q, Chen G, Dou X M, Chen Y L 2001 Opt. Laser Technol. 33 417
Google Scholar
[84] Randhawa S, Lachèze S, Renger J, Bouhelier A, de Lamaestre R E, Dereux A, Quidant R 2012 Opt. Express 20 2354
Google Scholar
[85] Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler P C, Li J, Palmer R, Korn D, Muehlbrandt S, van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J 2014 Nat. Photon. 8 229
Google Scholar
[86] Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder D L, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton L R, Hafner C, Leuthold J 2015 Nat. Photon. 9 525
Google Scholar
[87] Ayata M, Fedoryshyn Y, Heni W, Baeuerle B, Josten A, Zahner M, Koch U, Salamin Y, Hoessbacher C, Haffner C, Elder D L, Dalton L R, Leuthold J 2017 Science 358 630
Google Scholar
[88] Hoessbacher C, Josten A, Baeuerle B, Fedoryshyn Y, Hettrich H, Salamin Y, Heni W, Haffner C, Kaiser C, Schmid R, Elder D L, Hillerkuss D, Möller M, Dalton L R, Leuthold J 2017 Opt. Express 25 1762
Google Scholar
[89] Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W, Watanabe T, Cui T, Cheng B J, Saha S, Elder D L, Dalton L R, Boltasseva A, Shalaev V M, Kinsey N, Leuthold J 2018 Nature 556 483
Google Scholar
[90] Smalley J S T, Zhao Y H, Nawaz A A, Hao Q Z, Ma Y, Khoo I C, Huang T J 2011 Opt. Express 19 15265
Google Scholar
[91] Babicheva V E, Zhukovsky S V, Lavrinenko A V 2014 Opt. Express 22 28890
Google Scholar
[92] Dicken M J, Sweatlock L A, Pacifici D, Lezec H J, Bhattacharya K, Atwater H A 2008 Nano Lett. 8 4048
Google Scholar
[93] Stolz A, Ko S M, Patriarche G, Dogheche E, Cho Y H, Decoster D 2013 Appl. Phys. Lett. 102 021905
Google Scholar
[94] Dionne J A, Diest K, Sweatlock L A, Atwater H A 2009 Nano Lett. 9 897
Google Scholar
[95] Zhu S Y, Lo G Q, Kwong D L 2013 Opt. Express 21 8320
Google Scholar
[96] Feigenbaum E, Diest K, Atwater H A 2010 Nano Lett. 10 2111
Google Scholar
[97] Sorger V J, Lanzillotti-Kimura N D, Ma R M, Zhang X 2012 Nanophotonics 1 17
[98] Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64
Google Scholar
[99] Qian H L, Ma Y G, Yang Q, Chen B G, Liu Y, Guo X, Lin S S, Ruan J L, Liu X, Tong L M, Wang Z L 2014 ACS Nano 8 2584
Google Scholar
[100] Ansell D, Radko I P, Han Z, Rodriguez F J, Bozhevolnyi S I, Grigorenko A N 2015 Nat. Commum. 6 8846
Google Scholar
[101] Ding Y, Guan X, Zhu X, Hu H, Bozhevolnyi S I, Oxenløwe L K, Jin K J, Mortensen N A, Xiao S 2017 Nanoscale 9 15576
Google Scholar
[102] Wang Y L, Li T, Zhu S N 2017 Opt. Lett. 42 2247
Google Scholar
[103] Agrawal A, Susut C, Stafford G, Bertocci U, McMorran B, Lezec H J, Talin A A 2011 Nano Lett. 11 2774
Google Scholar
[104] Dennis B S, Haftel M I, Czaplewski D A, Lopez D, Blumberg G, Aksyuk V A 2015 Nat. Photon. 9 267
Google Scholar
[105] Armelles G, Cebollada A, García Martín A, González M U 2013 Adv. Opt. Mater. 1 10
Google Scholar
[106] Temnov V V, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia Martin A, Garcia Martin J M, Thomay T, Leitenstorfer A, Bratschitsch R 2010 Nat. Photon. 4 107
Google Scholar
[107] Firby C J, Elezzabi A Y 2015 Optica 2 598
Google Scholar
[108] Firby C J, Elezzabi A Y 2016 Appl. Phys. Lett. 109 011101
Google Scholar
[109] Pae J S, Im S J, Ho K S, Ri C S, Ro S B, Herrmann J 2018 Phys. Rev. B 98 041406
Google Scholar
[110] Razdolski I, Makarov D, Schmidt O G, Kirilyuk A, Rasing T, Temnov V V 2016 ACS Photon. 3 179
Google Scholar
[111] Firby C J, Chang P, Helmy A S, Elezzabi A Y 2016 ACS Photon. 3 2344
Google Scholar
[112] Belyaev V K, Murzin D V, Perova N N, Grunin A A, Fedyanin A A, Rodionova V V 2019 J. Magn. Magn. Mater. 482 292
Google Scholar
-
图 1 基于干涉的表面等离激元传播调制 (a)银纳米线网络结构中实现等离激元干涉调制[26]; (b)槽状银纳米波导结构中实现等离激元干涉调制[28]; (c)带状银波导结构中实现等离激元干涉调制[30]
Fig. 1. Modulation of propagating surface plasmons based on interference: (a) Interferometric modulation of surface plasmons in silver nanowire network[26]; (b) interferometric modulation of surface plasmons in nanoslot waveguide network in silver film[28]; (c) interferometric modulation of surface plasmons in silver strip waveguides[30].
图 2 基于光学材料的表面等离激元传播的全光调制 (a)基于量子点的表面等离激元调制[34]; (b)利用Er3+离子实现表面等离激元的调制[39]; (c)基于非线性光学材料的表面等离激元调制[41]; (d)基于光折变聚合物的表面等离激元调制[44]; (e)基于光致变色分子的表面等离激元调制[48]
Fig. 2. All-optical modulation of propagating surface plasmons based on optical materials: (a) Modulating surface plasmons by CdSe quantum dots[34]; (b) modulating surface plasmons via stimulated emission of copropagating surface plasmons on a Er3+-doped glass substrate[39]; (c) modulating surface plasmons based on nonlinear optical material[41]; (d) modulating surface plasmons based on photorefractive polymer film[44]; (e) modulating surface plasmons by photochromic molecules[48].
图 4 基于热光效应的表面等离激元传播调制 (a)利用掺杂染料分子的聚合物层的热光效应实现表面等离激元调制[54]; (b)利用掺杂金纳米颗粒的聚合物的热光效应实现介质加载型等离激元波导中的表面等离激元调制[57]; (c)基于电阻加热控制的聚合物热光效应实现条状金等离激元波导中的表面等离激元调制[59]; (d)基于电阻加热控制的聚合物热光效应实现介质加载型等离激元波导中的表面等离激元调制[61]; (e)基于电阻加热控制的聚合物热光效应实现柔性带状银波导中的表面等离激元调制[64]; (f)利用银和丙三醇的热光效应实现银纳米线波导中的表面等离激元调制[68]
Fig. 4. Modulation of propagating surface plasmons based on thermo-optic effect: (a) Modulating surface plasmons based on thermo-optic effect of dye-doped polymer film[54]; (b) modulating surface plasmons on dielectric-loaded plasmonic waveguides based on thermo-optic effect of gold nanoparticle-doped polymer[57]; (c) modulating surface plasmons by thermo-optic effect of electrically heated polymer surrounding gold stripe waveguides[59]; (d) modulating surface plasmons by thermo-optic effect of the electrically heated polymer in dielectric-loaded plasmonic waveguides[61]; (e) modulating surface plasmons by thermo-optic effect of electrically heated polymer surrounding flexible silver stripe waveguides[64]; (f) modulating surface plasmons on silver nanowires based on thermo-optic effect of silver and glycerol[68].
图 5 基于相变材料的表面等离激元传播调制 (a)利用镓的相变特性实现对表面等离激元的调制[72]; (b)利用Ge2Sb2Te5合金的相变特性实现对表面等离激元的调制[76]
Fig. 5. Modulation of propagating surface plasmons based on phase change materials: (a) Modulating surface plasmons by the phase change of gallium[72]; (b) modulating surface plasmons by the phase change of Ge2Sb2Te5[76].
图 6 基于电光效应的表面等离激元传播调制 (a)基于聚合物材料的线性电光效应的表面等离激元调制[85]; (b)基于DLD-164的线性电光效应的MZI型表面等离激元调制器[86]; (c)基于液晶的二次电光效应的表面等离激元调制[90]; (d)基于钛酸钡的二次电光效应的表面等离激元调制[92]
Fig. 6. Modulation of propagating surface plasmons based on electro-optic effect: (a) Modulating surface plasmons based on the Pockels electro-optic effect of polymer[85]; (b) plasmonic MZI modulator based on the Pockels electro-optic effect of DLD-164[86]; (c) modulating surface plasmons based on the Kerr effect of liquid crystal[90]; (d) modulating surface plasmons based on the Kerr effect of barium titanate film[92].
图 7 基于载流子浓度调控的等离激元调制器 (a)在MOS结构中调制硅载流子浓度实现等离激元调制器[94]; (b)在金属-介质-硅-介质-金属结构中调制硅芯层载流子浓度实现等离激元调制器[95]; (c)通过调控ITO载流子浓度实现等离激元调制器[97]
Fig. 7. Plasmonic modulators based on the control of carrier concentration: (a) Plasmonic modulator based on MOS structure by tuning the carrier concentration in Si[94]; (b) plasmonic modulator based on metal-insulator-silicon-insulator-metal structure by tuning the carrier concentration in the Si core[95]; (c) plasmonic modulator based on tuning the carrier concentration in ITO[97].
图 8 基于石墨烯载流子浓度调控的表面等离激元传播调制 (a)通过调控石墨烯载流子浓度实现对银纳米线表面等离激元的调制[99]; (b)通过调控石墨载流子浓度实现对金波导结构中表面等离激元边缘模式的调制[100]; (c)通过调控石墨烯载流子浓度实现对槽状金波导结构中表面等离激元的调制[101]
Fig. 8. Modulation of propagating surface plasmons by tuning the carrier concentration of graphene: (a) Modulating surface plasmons on silver nanowire by tuning the carrier concentration of graphene[99]; (b) modulating the wedge plasmon mode of gold waveguide by tuning the carrier concentration of graphene[100]; (c) modulating surface plasmons on gold slot waveguide by tuning the carrier concentration of graphene[101].
图 10 基于磁光效应的表面等离激元传播调制 (a)基于钴的磁光效应的表面等离激元调制[106]; (b)利用Bi:YIG的磁光效应的表面等离激元调制[107]
Fig. 10. Modulation of propagating surface plasmons based on magneto-optic effect: (a) Modulating surface plasmons by magneto-optic effect of Co[106]; (b) modulating surface plasmons by magneto-optic effect of Bi:YIG[107].
表 1 传播表面等离激元调制的原理
Table 1. Principles of modulating propagating surface plasmons.
调制类型 调制原理 全光调制 激发和干涉调制; 光学材料调制(增益/损耗介质调制、非线性光学材料调制、光致变色材料调制、光调制波导介电函数); 光学力操控调制 热调制 热光效应调制; 相变效应调制 电调制 电光调制(线性电光效应调制、二次电光效应调制); 载流子调制(电调制半导体载流子、电调制石墨烯载流子); 电致变色材料调制; 纳机电调制 磁调制 磁光效应调制 表 2 传播表面等离激元调制器的实验性能分析
Table 2. The experimental performance analysis of propagating surface plasmon modulators.
调制原理 工作波长/nm 消光比/dB 响应时间/调制频率 参考文献 全光调制 633 10 — [26] 633 12.6 — [27] 633 6 10 s [48] 633 9.5 — [30] 720—900 > 20 1 ms [44] 780 0.31 200 fs [50] 830 24 — [29] 1426 ~0.46 25 MHz [34] 热调制 442 — 40 Hz [65] 633 13 上升10 s, 下降2 s [54] 785 1.2 上升4.6 μs, 下降6.5 μs [68] 1520—1630 15 上升65 μs, 下降20 μs [60] 1525 — 100 Hz [61] 1530 0.48 8.3 kHz [66] 1530—1550 3 上升2 ns, 下降800 ns [67] 1550 35 0.7 ms [59] 1550 19 上升~ms, 下降60 μs [62] 1550 28 — [64] 1550 1.6 1 μs [76] 1588—1604 7.5 40 Hz [63] 电调制 633 14 2 s [103] 659 3 — [99] 688 0.71 — [92] 780 — 1 MHz [104] 1200—2200 20 — [97] 1460—1640 10 115 GHz [89] 1480—1600 — 65 GHz [85] 1500 0.36 — [100] 1500—1600 15 70 GHz [87] 1508—1516 0.64 上升1.3 s, 下降1 s [84] 1520—1620 6 70 GHz [86] 1520—1620 9 10 kHz [95] 1540—1560 2.1 200 kHz [101] 1550 — 170 GHz [88] 1550 4.6 100 kHz [94] 磁调制 808 — 690 Hz [106] -
[1] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
Google Scholar
[2] Ozbay E 2006 Science 311 189
Google Scholar
[3] Schuller J A, Barnard E S, Cai W S, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193
Google Scholar
[4] Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83
Google Scholar
[5] Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H, Xu H X 2018 Chem. Rev. 118 2882
Google Scholar
[6] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp1–223
[7] Sorger V J, Oulton R F, Ma R M, Zhang X 2012 MRS Bull. 37 728
Google Scholar
[8] Mayer K M, Hafner J H 2011 Chem. Rev. 111 3828
Google Scholar
[9] Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357
Google Scholar
[10] Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318
Google Scholar
[11] Linic S, Christopher P, Ingram D B 2011 Nat. Mater. 10 911
Google Scholar
[12] Yao Y, Kats M A, Genevet P, Yu N F, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257
Google Scholar
[13] Hsiao V K S, Zheng Y B, Juluri B K, Huang T J 2008 Adv. Mater. 20 3528
Google Scholar
[14] Guo P J, Schaller R D, Ketterson J B, Chang R P H 2016 Nat. Photon. 10 267
Google Scholar
[15] Stockhausen V, Martin P, Ghilane J, Leroux Y, Randriamahazaka H, Grand J, Felidj N, Lacroix J C 2010 J. Am. Chem. Soc. 132 10224
Google Scholar
[16] Jiang N N, Shao L, Wang J F 2014 Adv. Mater. 26 3282
Google Scholar
[17] Weeber J C, Krenn J R, Dereux A, Lamprecht B, Lacroute Y, Goudonnet J P 2001 Phys. Rev. B 64 045411
Google Scholar
[18] Dionne J A, Sweatlock L A, Atwater H A, Polman A 2006 Phys. Rev. B 73 035407
Google Scholar
[19] Briggs R M, Grandidier J, Burgos S P, Feigenbaum E, Atwater H A 2010 Nano Lett. 10 4851
Google Scholar
[20] Pan D, Wei H, Jia Z L, Xu H X 2014 Sci. Rep. 4 4993
[21] Zhang S P, Wei H, Bao K, Håkanson U, Halas N J, Nordlander P, Xu H X 2011 Phys. Rev. Lett. 107 096801
Google Scholar
[22] Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J, Xu H X 2010 Nano Lett. 10 1950
Google Scholar
[23] Wei H, Pan D, Xu H X 2015 Nanoscale 7 19053
Google Scholar
[24] Gao L, Chen L, Wei H, Xu H X 2018 Nanoscale 10 11923
Google Scholar
[25] Pan D, Wei H, Gao L, Xu H X 2016 Phys. Rev. Lett. 117 166803
Google Scholar
[26] Wei H, Li Z P, Tian X R, Wang Z X, Cong F Z, Liu N, Zhang S P, Nordlander P, Halas N J, Xu H X 2011 Nano Lett. 11 471
Google Scholar
[27] Li Z P, Zhang S P, Halas N J, Nordlander P, Xu H X 2011 Small 7 593
Google Scholar
[28] Pan D, Wei H, Xu H X 2013 Opt. Express 21 9556
Google Scholar
[29] Fu Y L, Hu X Y, Lu C C, Yue S, Yang H, Gong Q H 2012 Nano Lett. 12 5784
Google Scholar
[30] Wang Y L, Li T, Wang L, He H, Li L, Wang Q J, Zhu S N 2014 Laser Photon. Rev. 8 L47
Google Scholar
[31] Wei H, Wang Z X, Tian X R, Käll M, Xu H X 2011 Nat. Commum. 2 387
Google Scholar
[32] Wei H, Ratchford D, Li X Q, Xu H X, Shih C K 2009 Nano Lett. 9 4168
Google Scholar
[33] Li Q, Wei H, Xu H X 2014 Chin. Phys. B 23 097302
Google Scholar
[34] Pacifici D, Lezec H J, Atwater H A 2007 Nat. Photon. 1 402
Google Scholar
[35] Grandidier J, des Francs G C, Massenot S, Bouhelier A, Markey L, Weeber J C, Finot C, Dereux A 2009 Nano Lett. 9 2935
Google Scholar
[36] Liu N, Wei H, Li J, Wang Z X, Tian X R, Pan A L, Xu H X 2013 Sci. Rep. 3 1967
Google Scholar
[37] Ambati M, Nam S H, Ulin Avila E, Genov D A, Bartal G, Zhang X 2008 Nano Lett. 8 3998
Google Scholar
[38] de Leon I, Berini P 2010 Nat. Photon. 4 382
Google Scholar
[39] Krasavin A V, Vo T P, Dickson W, Bolger P M, Zayats A V 2011 Nano Lett. 11 2231
Google Scholar
[40] Tao J, Wang Q J, Huang X G 2011 Plasmonics 6 753
Google Scholar
[41] Lu H, Liu X M, Wang L R, Gong Y K, Mao D 2011 Opt. Express 19 2910
Google Scholar
[42] Pu M B, Yao N, Hu C G, Xin X C, Zhao Z Y, Wang C T, Luo X G 2010 Opt. Express 18 21030
Google Scholar
[43] Marder S R, Kippelen B, Jen A K Y, Peyghambarian N 1997 Nature 388 845
Google Scholar
[44] Chen J J, Li Z, Yue S, Gong Q H 2011 Nano Lett. 11 2933
Google Scholar
[45] Zhang L, Shi J, Yang Z, Huang M M, Chen Z J, Gong Q H, Cao S K 2008 Polymer 49 2107
Google Scholar
[46] Irie M, Fukaminato T, Matsuda K, Kobatake S 2014 Chem. Rev. 114 12174
Google Scholar
[47] Zhang C, Yan Y L, Zhao Y S, Yao J N 2014 Acc. Chem. Res. 47 3448
Google Scholar
[48] Pala R A, Shimizu K T, Melosh N A, Brongersma M L 2008 Nano Lett. 8 1506
Google Scholar
[49] Großmann M, Klick A, Lemke C, Falke J, Black M, Fiutowski J, Goszczak A J, Sobolewska E, Zillohu A U, Hedayati M K, Rubahn H G, Faupel F, Elbahri M, Bauer M 2015 ACS Photon. 2 1327
Google Scholar
[50] MacDonald K F, Sámson Z L, Stockman M I, Zheludev N I 2009 Nat. Photon. 3 55
[51] Li Z P, Käll M, Xu H X 2008 Phys. Rev. B 77 085412
Google Scholar
[52] Svedberg F, Li Z P, Xu H X, Käll M 2006 Nano Lett. 6 2639
Google Scholar
[53] Shalin A S, Ginzburg P, Belov P A, Kivshar Y S, Zayats A V 2014 Laser Photon. Rev. 8 131
Google Scholar
[54] Okamoto T, Kamiyama T, Yamaguchi I 1993 Opt. Lett. 18 1570
Google Scholar
[55] Gosciniak J, Bozhevolnyi S I 2013 Sci. Rep. 3 1803
Google Scholar
[56] Zhang Z Y, Zhao P, Lin P, Sun F G 2006 Polymer 47 4893
Google Scholar
[57] Weeber J C, Hassan K, Saviot L, Dereux A, Boissière C, Durupthy O, Chaneac C, Burov E, Pastouret A 2012 Opt. Express 20 27636
Google Scholar
[58] Padmaraju K, Logan D F, Zhu X L, Ackert J J, Knights A P, Bergman K 2013 Opt. Express 21 14342
Google Scholar
[59] Nikolajsen T, Leosson K, Bozhevolnyi S I 2004 Appl. Phys. Lett. 85 5833
Google Scholar
[60] Gosciniak J, Markey L, Dereux A, Bozhevolnyi S I 2012 Opt. Express 20 16300
Google Scholar
[61] Gosciniak J, Bozhevolnyi S I, Andersen T B, Volkov V S, Kjelstrup Hansen J, Markey L, Dereux A 2010 Opt. Express 18 1207
Google Scholar
[62] Gagnon G, Lahoud N, Mattiussi G A, Berini P 2006 J. Lightw. Technol. 24 4391
Google Scholar
[63] Gosciniak J, Markey L, Dereux A, Bozhevolnyi S I 2012 Nanotechnology 23 444008
Google Scholar
[64] Tang J, Liu Y R, Zhang L J, Fu X C, Xue X M, Qian G, Zhao N, Zhang T 2018 Micromachines 9 369
Google Scholar
[65] Lereu A L, Passian A, Goudonnet J P, Thundat T, Ferrell T L 2005 Appl. Phys. Lett. 86 154101
Google Scholar
[66] Kaya S, Weeber J C, Zacharatos F, Hassan K, Bernardin T, Cluzel B, Fatome J, Finot C 2013 Opt. Express 21 22269
Google Scholar
[67] Weeber J C, Bernardin T, Nielsen M G, Hassan K, Kaya S, Fatome J, Finot C, Dereux A, Pleros N 2013 Opt. Express 21 27291
Google Scholar
[68] Li Q, Chen L, Xu H X, Liu Z W, Wei H 2019 ACS Photon. http://dx.doi.org/10.1021/acsphotonics.9b00711
[69] Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M 2008 Nat. Mater. 7 972
Google Scholar
[70] Wuttig M, Yamada N 2007 Nat. Mater. 6 824
Google Scholar
[71] Zalba B, Marı́n J M, Cabeza L F, Mehling H 2003 Appl. Therm. Eng. 23 251
Google Scholar
[72] Krasavin A V, Zheludev N I 2004 Appl. Phys. Lett. 84 1416
Google Scholar
[73] Markov P, Appavoo K, Haglund R F, Weiss S M 2015 Opt. Express 23 6878
Google Scholar
[74] Jostmeier T, Mangold M, Zimmer J, Karl H, Krenner H J, Ruppert C, Betz M 2016 Opt. Express 24 17321
Google Scholar
[75] Sweatlock L A, Diest K 2012 Opt. Express 20 8700
Google Scholar
[76] Rudé M, Simpson R E, Quidant R, Pruneri V, Renger J 2015 ACS Photon. 2 669
Google Scholar
[77] Cai W S, White J S, Brongersma M L 2009 Nano Lett. 9 4403
Google Scholar
[78] Didomenico M, Wemple S H 1969 J. Appl. Phys. 40 720
Google Scholar
[79] Clark N A, Lagerwall S T 1980 Appl. Phys. Lett. 36 899
Google Scholar
[80] Soref R A, Bennett B R 1987 IEEE J. Quantum Electron. 23 123
Google Scholar
[81] Schildkraut J S 1988 Appl. Opt. 27 4587
Google Scholar
[82] Jung C, Yee S, Kuhn K 1995 Appl. Opt. 34 946
Google Scholar
[83] Jiang Y, Cao Z Q, Chen G, Dou X M, Chen Y L 2001 Opt. Laser Technol. 33 417
Google Scholar
[84] Randhawa S, Lachèze S, Renger J, Bouhelier A, de Lamaestre R E, Dereux A, Quidant R 2012 Opt. Express 20 2354
Google Scholar
[85] Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler P C, Li J, Palmer R, Korn D, Muehlbrandt S, van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J 2014 Nat. Photon. 8 229
Google Scholar
[86] Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder D L, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton L R, Hafner C, Leuthold J 2015 Nat. Photon. 9 525
Google Scholar
[87] Ayata M, Fedoryshyn Y, Heni W, Baeuerle B, Josten A, Zahner M, Koch U, Salamin Y, Hoessbacher C, Haffner C, Elder D L, Dalton L R, Leuthold J 2017 Science 358 630
Google Scholar
[88] Hoessbacher C, Josten A, Baeuerle B, Fedoryshyn Y, Hettrich H, Salamin Y, Heni W, Haffner C, Kaiser C, Schmid R, Elder D L, Hillerkuss D, Möller M, Dalton L R, Leuthold J 2017 Opt. Express 25 1762
Google Scholar
[89] Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W, Watanabe T, Cui T, Cheng B J, Saha S, Elder D L, Dalton L R, Boltasseva A, Shalaev V M, Kinsey N, Leuthold J 2018 Nature 556 483
Google Scholar
[90] Smalley J S T, Zhao Y H, Nawaz A A, Hao Q Z, Ma Y, Khoo I C, Huang T J 2011 Opt. Express 19 15265
Google Scholar
[91] Babicheva V E, Zhukovsky S V, Lavrinenko A V 2014 Opt. Express 22 28890
Google Scholar
[92] Dicken M J, Sweatlock L A, Pacifici D, Lezec H J, Bhattacharya K, Atwater H A 2008 Nano Lett. 8 4048
Google Scholar
[93] Stolz A, Ko S M, Patriarche G, Dogheche E, Cho Y H, Decoster D 2013 Appl. Phys. Lett. 102 021905
Google Scholar
[94] Dionne J A, Diest K, Sweatlock L A, Atwater H A 2009 Nano Lett. 9 897
Google Scholar
[95] Zhu S Y, Lo G Q, Kwong D L 2013 Opt. Express 21 8320
Google Scholar
[96] Feigenbaum E, Diest K, Atwater H A 2010 Nano Lett. 10 2111
Google Scholar
[97] Sorger V J, Lanzillotti-Kimura N D, Ma R M, Zhang X 2012 Nanophotonics 1 17
[98] Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64
Google Scholar
[99] Qian H L, Ma Y G, Yang Q, Chen B G, Liu Y, Guo X, Lin S S, Ruan J L, Liu X, Tong L M, Wang Z L 2014 ACS Nano 8 2584
Google Scholar
[100] Ansell D, Radko I P, Han Z, Rodriguez F J, Bozhevolnyi S I, Grigorenko A N 2015 Nat. Commum. 6 8846
Google Scholar
[101] Ding Y, Guan X, Zhu X, Hu H, Bozhevolnyi S I, Oxenløwe L K, Jin K J, Mortensen N A, Xiao S 2017 Nanoscale 9 15576
Google Scholar
[102] Wang Y L, Li T, Zhu S N 2017 Opt. Lett. 42 2247
Google Scholar
[103] Agrawal A, Susut C, Stafford G, Bertocci U, McMorran B, Lezec H J, Talin A A 2011 Nano Lett. 11 2774
Google Scholar
[104] Dennis B S, Haftel M I, Czaplewski D A, Lopez D, Blumberg G, Aksyuk V A 2015 Nat. Photon. 9 267
Google Scholar
[105] Armelles G, Cebollada A, García Martín A, González M U 2013 Adv. Opt. Mater. 1 10
Google Scholar
[106] Temnov V V, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia Martin A, Garcia Martin J M, Thomay T, Leitenstorfer A, Bratschitsch R 2010 Nat. Photon. 4 107
Google Scholar
[107] Firby C J, Elezzabi A Y 2015 Optica 2 598
Google Scholar
[108] Firby C J, Elezzabi A Y 2016 Appl. Phys. Lett. 109 011101
Google Scholar
[109] Pae J S, Im S J, Ho K S, Ri C S, Ro S B, Herrmann J 2018 Phys. Rev. B 98 041406
Google Scholar
[110] Razdolski I, Makarov D, Schmidt O G, Kirilyuk A, Rasing T, Temnov V V 2016 ACS Photon. 3 179
Google Scholar
[111] Firby C J, Chang P, Helmy A S, Elezzabi A Y 2016 ACS Photon. 3 2344
Google Scholar
[112] Belyaev V K, Murzin D V, Perova N N, Grunin A A, Fedyanin A A, Rodionova V V 2019 J. Magn. Magn. Mater. 482 292
Google Scholar
计量
- 文章访问数: 16339
- PDF下载量: 855
- 被引次数: 0