-
等离激元学连接着光子学和电子学, 在光产生、显微显示、数据存储、光集成和光子芯片、传感技术和纳米制造技术等方面展示出重要应用, 正极大地促进既拥有纳米电子学的尺寸又兼有介电光子学速度的新一代信息材料和器件的发展. 但是, 传统上绝大部分等离激元材料和器件都是基于静态的设计, 即一旦被制备, 其性能也就确定, 人们无法根据需求进行实时的主动调控. 因此, 近年来人们开始从应用需求出发, 致力于研制动态调控的等离激元材料和器件. 本文总结等离激元材料和器件的动态调控研究进展, 给出动态调控等离激元材料和器件的基本原理, 即通过动态改变材料中金属微纳结构的等效介电函数、动态调节系统外部环境、动态控制结构中的耦合效应等, 实现对等离激元材料和器件性能的实时动态控制. 在此基础上, 分别以等离激元材料、等离激元超构材料、等离激元超构表面等为例, 展示在电、光、力、温度、环境等外部作用下相关材料和器件性能的实时改变和动态控制, 期望推动发展新型亚波长光电功能材料和器件.
-
关键词:
- 等离激元材料和器件的动态调控 /
- 等离激元超构材料 /
- 等离激元超构表面
As is well known, plasmonics bridges the gap between nanoscale electronics and dielectric photonics, and is expected to be applied to light generation, photonic integration and chips, optical sensing and nanofabrication technology. So far, most of plasmonic microstructures and nanostructures cannot dynamically tune the properties once their structures are fabricated. Therefore, developing active plasmonic materials and devices is especially desired and necessary. Recently, dynamically tunable plasmonic materials and devices have been intensively investigated with the aim of practical applications. Here in this paper, we review recent research advances in active plasmonic materials and devices. Firstly we summarize three approaches to dynamically tuning plasmonic materials and devices. The first approach is to dynamically change the effective permittivity of metallic microstructures and nanostructures. The second approach is to dynamically adjust the ambient environments of the materials and devices. The third approach is to real-time tune the coupling effects in the nanostructures. Then we take ordinary plasmonic materials, plasmonic metamaterials, and plasmonic metasurfaces for example to show how to make them dynamically tunable. With external fields (such as electrical field, light field, thermal field, and mechanical force field, etc.), various approaches have been demonstrated in dynamically tuning the physical properties of plasmonic systems in real time. We anticipate that this review will promote the further development of new-generation subwavelength materials and optoelectrionic devices with new principles and better performances.-
Keywords:
- dynamically tunable plasmonic materials and devices /
- active plasmonic metamaterials /
- active plasmonic metasurfaces
[1] Ritchie R H 1957 Phys. Rev. 106 874
Google Scholar
[2] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667
Google Scholar
[3] Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357
Google Scholar
[4] Xu H, Käll M 2002 Phys. Rev. Lett. 89 246802
Google Scholar
[5] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
Google Scholar
[6] Ozbay E 2006 Science 311 189
Google Scholar
[7] Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82
Google Scholar
[8] Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X 2011 Nat. Mater. 10 110
Google Scholar
[9] Lu J, Xu C, Dai J, Li J, Wang Y, Lin Y, Li P 2015 ACS Photonics 2 73
Google Scholar
[10] Ren M, Pan C, Li Q, Cai W, Zhang X, Wu Q, Fan S, Xu J 2013 Opt. Lett. 38 3133
Google Scholar
[11] Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801
Google Scholar
[12] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)
[13] Liu S D, Cheng M T, Yang Z J, Wang Q Q 2008 Opt. Lett. 33 851
Google Scholar
[14] Guo X, Qiu M, Bao J, Wiley B J, Yang Q, Zhang X, Ma Y, Yu H, Tong L 2009 Nano Lett. 9 4515
Google Scholar
[15] Hu Q, Xu D H, Zhou Y, Peng R W, Fan R H, Fang N X, Wang Q J, Huang X R, Wang M 2013 Sci. Rep. 3 3095
Google Scholar
[16] Wei H, Tian X, Pan D, Chen L, Jia Z, Xu H 2015 Nano Lett. 15 560
Google Scholar
[17] Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193
Google Scholar
[18] Xue C H, Jiang H T, Lu H, Du G Q, Chen H 2013 Opt. Lett. 38 959
Google Scholar
[19] Lu C, Hu X, Shi K, Hu Q, Zhu R, Yang H, Gong Q 2015 Light Sci. Appl 4 e302
Google Scholar
[20] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392
Google Scholar
[21] Li Z Y 2015 EPL 110 14001
Google Scholar
[22] Gu Y, Huang L, Martin O J F, Gong Q 2010 Phys. Rev. B 81 193103
Google Scholar
[23] Yi M, Lu C, Gong Y, Qi Z, Cui Y 2014 Opt. Express 22 29627
Google Scholar
[24] Huang C P, Yin X G, Wang Q J, Huang H, Zhu Y Y 2010 Phys. Rev. Lett. 104 016402
Google Scholar
[25] Shi X, Han D, Dai Y, Yu Z, Sun Y, Chen H, Liu X, Zi J 2013 Opt. Express 21 28438
Google Scholar
[26] Cheng G, Qin W, Lin M H, Wei L, Fan X, Zhang H, Gwo S, Zeng C, Hou J G, Zhang Z 2017 Phys. Rev. Lett. 119 156803
Google Scholar
[27] Shi W B, Liu L Z, Peng R, Xu D H, Zhang K, Jing H, Fan R H, Huang X R, Wang Q J, Wang M 2018 Nano Lett. 18 1896
Google Scholar
[28] Liu Y, Zhang X 2011 Chem. Soc. Rev. 40 2494
Google Scholar
[29] Xiong X, Wang Z W, Fu S J, Wang M, Peng R W, Hao X P, Sun C 2011 Appl. Phys. Lett. 99 181905
Google Scholar
[30] Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534
Google Scholar
[31] Ma H F, Cui T J 2010 Nat. Commun. 1 21
Google Scholar
[32] Wu K, Cheng Q, Wang G P 2016 J. Opt. 18 044001
Google Scholar
[33] Sheng C, Liu H, Wang Y, Zhu S N, Genov D A 2013 Nat. Photonics 7 902
Google Scholar
[34] Bai Q, Chen J, Shen N H, Cheng C, Wang H T 2010 Opt. Express 18 2106
Google Scholar
[35] Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104
Google Scholar
[36] Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Adv. Mater. 25 3994
Google Scholar
[37] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426
Google Scholar
[38] Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photonics Rev. 9 713
Google Scholar
[39] Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227
Google Scholar
[40] Xie Z, Lei T, Si G, Wang X, Lin J, Min C, Yuan X 2017 ACS Photonics 4 2158
Google Scholar
[41] Chen H T, Taylor A J, Yu N 2016 Rep. Prog. Phys. 79 076401
Google Scholar
[42] Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026
[43] Jiang S C, Xiong X, Hu Y S, Jiang S W, Hu Y H, Xu D H, Peng R W, Wang M 2015 Phys. Rev. B 91 125421
Google Scholar
[44] Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405
Google Scholar
[45] Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917
Google Scholar
[46] Fan K, Padilla W J 2015 Mater. Today 18 39
Google Scholar
[47] Wuttig M, Bhaskaran H, Taubner T 2017 Nat. Photonics 11 465
Google Scholar
[48] Jiang N, Zhuo X, Wang J 2018 Chem. Rev. 118 3054
Google Scholar
[49] Strohfeldt N, Tittl A, Schäferling M, Neubrech F, Kreibig U, Griessen R, Giessen H 2014 Nano Lett. 14 1140
Google Scholar
[50] Sterl F, Strohfeldt N, Walter R, Griessen R, Tittl A, Giessen H 2015 Nano Lett. 15 7949
Google Scholar
[51] Duan X, Kamin S, Sterl F, Giessen H, Liu N 2016 Nano Lett. 16 1462
Google Scholar
[52] Chen Y, Duan X, Matuschek M, Zhou Y, Neubrech F, Duan H, Liu N 2017 Nano Lett. 17 5555
Google Scholar
[53] Li J, Kamin S, Zheng G, Neubrech F, Zhang S, Liu N 2018 Sci. Adv. 4 eaar6768
Google Scholar
[54] Yu P, Li J, Zhang S, Jin Z, Schütz G, Qiu C W, Hirscher M, Liu N 2018 Nano Lett. 18 4584
Google Scholar
[55] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630
Google Scholar
[56] Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotechnol. 7 330
Google Scholar
[57] Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, García de Abajo F J, Hillenbrand R, Koppens F H L 2012 Nature 487 77
Google Scholar
[58] Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82
Google Scholar
[59] Cheng H, Chen S, Yu P, Li J, Xie B, Li Z, Tian J 2013 Appl. Phys. Lett. 103 223102
Google Scholar
[60] Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, García de Abajo F J, Nordlander P, Zhu X, Halas N J 2014 Nano Lett. 14 299
Google Scholar
[61] Ni G X, Wang L, Goldflam M D, Wagner M, Fei Z, McLeod A S, Liu M K, Keilmann F, Özyilmaz B, Castro Neto A H, Hone J, Fogler M M, Basov D N 2016 Nat. Photonics. 10 244
Google Scholar
[62] Lundeberg M B, Gao Y, Asgari R, Tan C, van Duppen B, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens F H L 2017 Science 357 187
Google Scholar
[63] Iranzo D A, Nanot S, Dias E J C, Epstein I, Peng C, Efetov D K, Lundeberg M B, Parret R, Osmond J, Hong J Y, Kong J, Englund D R, Peres N M R, Koppens F H L 2018 Science 360 291
Google Scholar
[64] Ni G X, McLeod A S, Sun Z, Wang L, Xiong L, Post K W, Sunku S S, Jiang B Y, Hone J, Dean C R, Fogler M M, Basov D N 2018 Nature 557 530
Google Scholar
[65] Dorfs D, Härtling T, Miszta K, Bigall N C, Kim M R, Genovese A, Falqui A, Povia M, Manna L 2011 J. Am. Chem. Soc. 133 11175
Google Scholar
[66] Jain P K, Manthiram K, Engel J H, White S L, Faucheaux J A, Alivisatos A P 2013 Angew. Chem. Int. Ed. 52 13671
Google Scholar
[67] Garcia G, Buonsanti R, Runnerstrom E L, Mendelsberg R J, Llordes A, Anders A, Richardson T J, Milliron D J 2011 Nano Lett. 11 4415
Google Scholar
[68] Runnerstrom E L, Llordés A, Lounis S D, Milliron D J 2014 Chem. Commun. 50 10555
Google Scholar
[69] Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257
Google Scholar
[70] Zhou Y, Wang C, Xu D H, Fan R H, Zhang K, Peng R W, Hu Q, Wang M 2014 EPL 107 34007
Google Scholar
[71] Zhou Y, Dong Y Q, Zhang K, Peng R W, Hu Q, Wang M 2014 EPL 107 54001
Google Scholar
[72] Zhou Y, Dong Y Q, Fan R H, Hu Q, Peng R W, Wang M 2014 Appl. Phys. Lett. 105 041114
Google Scholar
[73] Miao Z, Wu Q, Li X, He Q, Ding K, An Z, Zhang Y, Zhou L 2015 Phys. Rev. X 5 041027
[74] Wang Z, Hu B, Li B, Liu W, Li X, Liu J, Wang Y 2016 Mater. Res. Express 3 115011
Google Scholar
[75] Kim T T, Oh S S, Kim H D, Park H S, Hess O, Min B, Zhang S 2017 Sci. Adv. 3 e1701377
Google Scholar
[76] Sherrott M C, Hon P W C, Fountaine K T, Garcia J C, Ponti S M, Brar V W, Sweatlock L A, Atwater H A 2017 Nano Lett. 17 3027
Google Scholar
[77] Zhou Y, Zhu Y Y, Zhang K, Wu H W, Peng R W, Fan R H, Wang M 2017 Opt. Express 25 012081
Google Scholar
[78] Zeng B, Huang Z, Singh A, Yao Y, Azad A K, Mohite A D, Taylor A J, Smith D R, Chen H T 2018 Light Sci. Appl. 7 51
Google Scholar
[79] Kossyrev P A, Yin A, Cloutier S G, Cardimona D A, Huang D, Alsing P M, Xu J M 2005 Nano Lett. 5 1978
Google Scholar
[80] Wang X, Kwon D H, Werner D H, Khoo I C, Kildishev A V, Shalaev V M 2007 Appl. Phys. Lett. 91 143122
Google Scholar
[81] Xiao S, Chettiar U K, Kildishev A V, Drachev V, Khoo I C, Shalaev V M 2009 Appl. Phys. Lett. 95 033115
Google Scholar
[82] Cetin A E, Mertiri A, Huang M, Erramilli S, Altug H 2013 Adv. Opt. Mater. 1 915
Google Scholar
[83] Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403
Google Scholar
[84] Si G, Zhao Y, Leong E S P, Liu Y J 2014 Materials 7 1296
Google Scholar
[85] Abass A, Rodriguez S R, Ako T, Aubert T, Verschuuren M, Van Thourhout D, Beeckman J, Hens Z, Rivas J G, Maes B 2014 Nano Lett. 14 5555
Google Scholar
[86] Khoo I C 2014 Prog. Quantum Electron. 38 77
Google Scholar
[87] Wang L, Lin X W, Hu W, Shao G H, Chen P, Liang L J, Jin B B, Wu P H, Qian H, Lu Y N, Liang X, Zheng Z G, Lu Y Q 2015 Light Sci. Appl. 4 e253
Google Scholar
[88] Franklin D, Chen Y, Vazquez-Guardado A, Modak S, Boroumand J, Xu D, Wu S T, Chanda D 2015 Nat. Commun. 6 7337
Google Scholar
[89] Sautter J, Staude I, Decker M, Rusak E, Neshev D N, Brener I, Kivshar Y S 2015 ACS Nano 9 4308
Google Scholar
[90] Bohn J, Bucher T, Chong K E, Komar A, Choi D Y, Neshev D N, Kivshar Y S, Pertsch T, Staude I 2018 Nano Lett. 18 3461
Google Scholar
[91] Abb M, Albella P, Aizpurua J, Muskens O L 2011 Nano Lett. 11 2457
Google Scholar
[92] Abb M, Wang Y, de Groot C H, Muskens O L 2014 Nat. Commun. 5 4869
Google Scholar
[93] Park J, Kang J H, Liu X, Brongersma M L 2015 Sci. Rep. 5 15754
Google Scholar
[94] Papadakis G T, Atwater H A 2015 Phys. Rev. B 92 184101
Google Scholar
[95] Zhu Y, Hu X, Chai Z, Yang H, Gong Q 2015 Appl. Phys. Lett. 106 091109
Google Scholar
[96] Guo P, Schaller R D, Ketterson J B, Chang R P H 2016 Nat. Photonics 10 267
Google Scholar
[97] Huang Y W, Lee H W H, Sokhoyan R, Pala R A, Thyagarajan K, Han S, Tsai D P, Atwater H A 2016 Nano Lett. 16 5319
Google Scholar
[98] Park J, Kang J H, Kim S J, Liu X, Brongersma M L 2017 Nano Lett. 17 407
Google Scholar
[99] Alam M Z, Schulz S A, Upham J, de Leon I, Boyd R W 2018 Nat. Photonics 12 79
Google Scholar
[100] Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401
Google Scholar
[101] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597
Google Scholar
[102] Zhang S, Zhou J, Park Y S, Rho J, Singh R, Nam S, Azad A K, Chen H T, Yin X, Taylor A J, Zhang X 2012 Nat. Commun. 3 942
Google Scholar
[103] Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J, Zhang W 2012 Nat. Commun. 3 1151
Google Scholar
[104] Iyer P P, Pendharkar M, Palmstrøm C J, Schuller J A 2017 Nat. Commun. 8 472
Google Scholar
[105] Lu Y J, Sokhoyan R, Cheng W H, Shirmanesh G K, Davoyan A R, Pala R A, Thyagarajan K, Atwater H A 2017 Nat. Commun. 8 1631
Google Scholar
[106] Shcherbakov M R, Liu S, Zubyuk V V, Vaskin A, Vabishchevich P P, Keeler G, Pertsch T, Dolgova T V, Staude I, Brener I, Fedyanin A A 2017 Nat. Commun. 8 17
Google Scholar
[107] Yang Y, Kelley K, Sachet E, Campione S, Luk T S, Maria J P, Sinclair M B, Brener I 2017 Nat. Photonics 11 390
Google Scholar
[108] Rahmani M, Xu L, Miroshnichenko A E, Komar A, Camacho-Morales R, Chen H, Zárate Y, Kruk S, Zhang G, Neshev D, Kivshar Y S 2017 Adv. Funct. Mater. 27 1700580
Google Scholar
[109] Coppens Z J, Valentine J G 2017 Adv. Mater. 29 1701275
Google Scholar
[110] Dintinger J, Robel I, Kamat P V, Genet C, Ebbesen T W 2006 Adv. Mater. 18 1645
Google Scholar
[111] Pala R A, Shimizu K T, Melosh N A, Brongersma M L 2008 Nano Lett. 8 1506
Google Scholar
[112] Leroux Y, Lacroix J C, Fave C, Stockhausen V, Félidj N, Grand J, Hohenau A, Krenn J R 2009 Nano Lett. 9 2144
Google Scholar
[113] Stockhausen V, Martin P, Ghilane J, Leroux Y, Randriamahazaka H, Grand J, Felidj N, Lacroix J C 2010 J. Am. Chem. Soc. 132 10224
Google Scholar
[114] Baba A, Tada K, Janmanee R, Sriwichai S, Shinbo K, Kato K, Kaneko F, Phanichphant S 2012 Adv. Funct. Mater. 22 4383
Google Scholar
[115] Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler P C, Li J, Palmer R, Korn D, Muehlbrandt S, van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J 2014 Nat. Photonics 8 229
Google Scholar
[116] Wang Q, Liu L, Wang Y, Liu P, Jiang H, Xu Z, Ma Z, Oren S, Chow E K C, Lu M, Dong L 2015 Sci. Rep. 5 18567
[117] Xu T, Walter E C, Agrawal A, Bohn C, Velmurugan J, Zhu W, Lezec H J, Talin A A 2016 Nat. Commun. 7 10479
Google Scholar
[118] Lu W, Jiang N, Wang J 2017 Adv. Mater. 29 1604862
Google Scholar
[119] Ren M X, Wu W, Cai W, Pi B, Zhang X Z, Xu J J 2017 Light Sci. Appl. 6 e16254
Google Scholar
[120] Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W, Watanabe T, Cui T, Cheng B, Saha S, Elder D L, Dalton L R, Boltasseva A, Shalaev V M, Kinsey N, Leuthold J 2018 Nature 556 483
Google Scholar
[121] Wuttig M, Yamada N 2007 Nat. Mater. 6 824
Google Scholar
[122] Michel A K U, Chigrin D N, Maß T W W, Schönauer K, Salinga M, Wuttig M, Taubner T 2013 Nano Lett. 13 3470
Google Scholar
[123] Cao T, Simpson R E, Cryan M J 2013 J. Opt. Soc. Am. B 30 439
Google Scholar
[124] Zou L, Cryan M, Klemm M 2014 Opt. Express 22 24142
Google Scholar
[125] Rudé M, Simpson R E, Quidant R, Pruneri V, Renger J 2015 ACS Photon. 2 669
Google Scholar
[126] Chen Y, Li X, Sonnefraud Y, Fernández-Domínguez A I, Luo X, Hong M, Maier S A 2015 Sci. Rep. 5 8660
Google Scholar
[127] Cao T, Wei C, Mao L 2015 Sci. Rep. 5 14666
Google Scholar
[128] Yin X, Schäferling M, Michel A K U, Tittl A, Wuttig M, Taubner T, Giessen H 2015 Nano Lett. 15 4255
Google Scholar
[129] Tittl A, Michel A K U, Schäferling M, Yin X, Gholipour B, Cui L, Wuttig M, Taubner T, Neubrech F, Giessen H 2015 Adv. Mater. 27 4597
Google Scholar
[130] Cao T, Bao J, Mao L, Zhang T, Novitsky A, Nieto-Vesperinas M, Qiu C W 2016 ACS Photonics 3 1934
Google Scholar
[131] Yin X, Steinle T, Huang L, Taubner T, Wuttig M, Zentgraf T, Giessen H 2017 Light Sci. Appl. 6 e17016
Google Scholar
[132] Qu Y, Li Q, Du K, Cai L, Lu J, Qiu M 2017 Laser Photonics. Rev. 11 1700091
Google Scholar
[133] Tian J, Luo H, Yang Y, Ding F, Qu Y, Zhao D, Qiu M, Bozhevolnyi S I 2019 Nat. Commun. 10 396
Google Scholar
[134] Suh J Y, Donev E U, Lopez R, Feldman L C, Haglund R F 2006 Appl. Phys. Lett. 88 133115
Google Scholar
[135] Dicken M J, Aydin K, Pryce I M, Sweatlock L A, Boyd E M, Walavalkar S, Ma J, Atwater H A 2009 Opt. Express 17 18330
Google Scholar
[136] Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Ventra M D, Basov D N 2009 Science 325 1518
Google Scholar
[137] Huang W X, Yin X G, Huang C P, Wang Q J, Miao T F, Zhu Y Y 2010 Appl. Phys. Lett. 96 261908
Google Scholar
[138] Liu M, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345
Google Scholar
[139] Ferrara D W, Nag J, MacQuarrie E R, Kaye A B, Haglund R F 2013 Nano Lett. 13 4169
Google Scholar
[140] Kats M A, Blanchard R, Genevet P, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F 2013 Opt. Lett. 38 368
Google Scholar
[141] Wang H, Yang Y, Wang L 2014 Appl. Phys. Lett. 105 071907
Google Scholar
[142] Yu P, Chen S, Li J, Cheng H, Li Z, Liu W, Tian J 2015 Plasmonics 10 625
Google Scholar
[143] Zhu Y, Hu X, Yang H, Gong Q 2015 J. Opt. 17 105101
Google Scholar
[144] Kim S J, Yun H, Park K, Hong J, Yun J G, Lee K, Kim J, Jeong S J, Mun S E, Sung J, Lee Y W, Lee B 2017 Sci. Rep. 7 43723
Google Scholar
[145] Shu F Z, Yu F F, Peng R W, Zhu Y Y, Xiong B, Fan R H, Wang Z H, Liu Y, Wang M 2018 Adv. Opt. Mater. 6 1700939
Google Scholar
[146] Jia Z Y, Shu F Z, Gao Y J, Cheng F, Peng R W, Fan R H, Liu Y, Wang M 2018 Phys. Rev. Appl. 9 034009
Google Scholar
[147] Zhu L, Kapraun J, Ferrara J, Chang-Hasnain C J 2015 Optica 2 255
Google Scholar
[148] Ee H S, Agarwal R 2016 Nano Lett. 16 2818
Google Scholar
[149] Kamali S M, Arbabi E, Arbabi A, Horie Y, Faraon A 2016 Laser Photonics Rev. 10 1002
Google Scholar
[150] Malek S C, Ee H S, Agarwal R 2017 Nano Lett. 17 3641
Google Scholar
[151] Tseng M L, Yang J, Semmlinger M, Zhang C, Nordlander P, Halas N J 2017 Nano Lett. 17 6034
Google Scholar
[152] She A, Zhang S, Shian S, Clarke D R, Capasso F 2018 Sci. Adv. 4 eaap9957
Google Scholar
[153] Laible F, Gollmer D A, Dickreuter S, Kern D P, Fleischer M 2018 Nanoscale 10 14915
Google Scholar
[154] Liu X, Huang Z, Zhu C, Wang L, Zang J 2018 Nano Lett. 18 1435
Google Scholar
[155] Gao F, Li D, Peng R W, Hu Q, Wei K, Wang Q J, Zhu Y Y, Wang M 2009 Appl. Phys. Lett. 95 011104
Google Scholar
[156] Ou J Y, Plum E, Zhang J, Zheludev N I 2013 Nat. Nanotechnol. 8 252
Google Scholar
[157] Ma F, Lin Y S, Zhang X, Lee C 2014 Light Sci. Appl. 3 e171
Google Scholar
[158] Kan T, Isozaki A, Kanda N, Nemoto N, Konishi K, Takahashi H, Kuwata-Gonokami M, Matsumoto K, Shimoyama I 2015 Nat. Commun. 6 8422
Google Scholar
[159] Dennis B S, Haftel M I, Czaplewski D A, Lopez D, Blumberg G, Aksyuk V A 2015 Nat. Photonics 9 267
Google Scholar
[160] Kern J, Kullock R, Prangsma J, Emmerling M, Kamp M, Hecht B 2015 Nat. Photonics 9 582
Google Scholar
[161] Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2015 Adv. Mater. 27 1201
Google Scholar
[162] Zheludev N I, Plum E 2016 Nat. Nanotechnol. 11 16
Google Scholar
[163] Kuzyk A, Schreiber R, Zhang H, Govorov A O, Liedl T, Liu N 2014 Nat. Mater. 13 862
Google Scholar
[164] Holsteen A L, Raza S, Fan P, Kik P G, Brongersma M L 2017 Science 358 1407
Google Scholar
[165] Manjappa M, Pitchappa P, Singh N, Wang N, Zheludev N I, Lee C, Singh R 2018 Nat. Commun. 9 4056
Google Scholar
[166] Kristensen A, Yang J K W, Bozhevolnyi S I, Link S, Nordlander P, Halas N J, Mortensen N A 2016 Nat. Rev. Mater. 2 16088
[167] Novotny L, van Hulst N 2011 Nat. Photonics 5 83
Google Scholar
[168] Li Z, Zhou Y, Qi H, Pan Q, Zhang Z, Shi N N, Lu M, Stein A, Li C Y, Ramanathan S, Yu N 2016 Adv. Mater. 28 9117
Google Scholar
[169] Dicken M J, Sweatlock L A, Pacifici D, Lezec H J, Bhattacharya K, Atwater H A 2008 Nano Lett. 8 4048
Google Scholar
[170] Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98
[171] Nicholls L H, Rodríguez-Fortuño F J, Nasir M E, Córdova-Castro R M, Olivier N, Wurtz G A, Zayats A V 2017 Nat. Photonics 11 628
Google Scholar
[172] Wang Z, Cheng F, Winsor T, Liu Y 2016 Nanotechnology 27 412001
Google Scholar
[173] Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S, Luk'yanchuk B 2016 Science 354 aag2472
Google Scholar
[174] Xia D, Ku Z, Lee S C, Brueck S R J 2011 Adv. Mater. 23 147
Google Scholar
[175] Klinkova A, Choueiri R M, Kumacheva E 2014 Chem. Soc. Rev. 43 3976
Google Scholar
[176] Chen F, Li J, Yu F, Zhao D, Wang F, Chen Y, Peng R W, Wang M 2016 Adv. Mater. 28 7193
Google Scholar
[177] Guo L J 2007 Adv. Mater. 19 495
-
图 1 动态可调等离激元材料和器件示意 (a)通过氢气调控手性光学响应的工作原理[51]; (b)通过红外纳米成像观察石墨烯中电调控等离激元[58]; (c)相变材料锗锑碲常温时为非晶相, 高温时为晶相[121]; (d)亚波长小孔后等离激元诱导的光透射动态调控[155]
Fig. 1. Schematic of active plasmonic materials and devices: (a) Working principle of hydrogen regulation to the chiroptical response[51]; (b) gate-tuning of graphene plasmons revealed by infrared nano-imaging[58]; (c) GeSbTe is amorphous at room temperature, and crystalline at high temperature[121]; (d) tunable interference of light behind subwavelength apertures[155].
图 2 动态调节传播型表面等离激元 (a)通过散射扫描近场光学显微镜对传播型和局域型石墨烯等离激元成像[57]; (b)利用液晶实现对表面等离激元的热调控[82]; (c)通过石墨烯接触调控等离激元波导的色散关系[70]; (d)用于调控表面等离激元的平面外设计的柔性超构表面[154]
Fig. 2. Dynamically tune propagating surface plasmons: (a) Imaging propagating and localized graphene plasmons by scattering-type scanning near-field optical microscopy[57]; (b) thermal tuning of surface plasmon polaritons using liquid crystals[82]; (c) tuning the dispersion relation of a plasmonic waveguide via graphene contact[70]; (d) out-of-plane designed soft metasurface for tunable surface plasmon polariton[154].
图 3 动态调控局域型表面等离激元 (a)借助10 nm的钯催化层和5 nm的钛缓冲剂将镁颗粒转换成氢化镁, 反之亦然[50]; (b)全光控制单个等离激元纳米天线-ITO混合结构[91]; (c)一种在近红外频段下工作的电力驱动可重构的等离激元超构材料[156]; (d)动态调节掺杂纳米晶中表面等离激元共振[67]; (e)掺杂纳米晶作为氧化还原化学反应的等离激元探头[66]
Fig. 3. Dynamically tune localized surface plasmons: (a) Switching of magnesium particles to magnesium hydride and vice versa with the aid of a 10 nm catalytic Pd layer and 5 nm Ti buffer[50]; (b) all-optical control of a single plasmonic nanoantenna-ITO hybrid[91]; (c) an electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared[156]; (d) dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals[67]; (e) doped nanocrystals as plasmonic probes of redox chemistry[66].
图 4 动态调控等离激元色彩 (a)绘画作品的动态显示, 展示了黑/白显示和彩色显示之间的转换[52]; (b)利用液晶介电函数变化实现快速高对比度的电致变色开关[117]; (c)基于二氧化钒相变动态可调等离激元彩色显示[145]; (d)二维动态调控铝等离激元阵列实现全光谱响应[151]
Fig. 4. Dynamically tune plasmonic colors: (a) Dynamic display of the artwork, showing transformations between black/white printing and color printing[52]; (b) high-contrast and fast electrochromic switching enabled by the variation in permittivity of liquid crystals[117]; (c) dynamic plasmonic color generation based on phase transition of vanadium dioxide[145]; (d) two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response[151].
图 5 动态可调纳米天线 (a)利用二氢化钇与氢气反应实现纳米天线开关[49]; (b)在SmNiO3薄膜上设计等离激元超构表面实现对红外反射率的窄带调控[168]; (c)石墨烯复合等离激元天线的宽带电调控[69]; (d)超薄非线性超构表面中的动态超快可调慢光效应[19]
Fig. 5. Active plamsonic nanoantennas: (a) Switchable nanoantennas by the interaction of yttrium dihydride with hydrogen[49]; (b) narrowband tuning of infrared reflectivity in devices consisting of plasmonic metasurfaces patterned on SmNiO3 thin films[168]; (c) broad electrical tuning of graphene-loaded plasmonic antennas[69]; (d) an actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces[19].
图 6 等离激元调制器 (a)钛酸钡薄膜等离激元干涉仪中电光调制[169]; (b)通过二氧化钒相变调控表面等离激元传播方向[144]; (c)基于锗锑碲相变动态控制表面等离激元波导[125]; (d)利用光致变色分子实现非易失性等离激元开关[111]
Fig. 6. Plamsonic modulators: (a) Electrooptic modulation in thin film barium titanate plasmonic interferometers[169]; (b) active directional switching of surface plasmon polaritons using the phase transition of vanadium dioxide[144]; (c) active control of surface plasmon waveguides based on the phase transition of GeSbTe[125]; (d) a nonvolatile plasmonic switch employing photochromic molecules[111].
图 7 动态可调负折射率 (a)超构材料中可调磁响应[81]; (b)基于相变材料可调负折射率超构材料[123]
Fig. 7. Dynamically tunable negative refractive index: (a) Tunable magnetic response of metamaterials[81]; (b) tunable negative index metamaterials based on phase-change materials[123], reprinted with permission from Ref. [123] © The Optical Society.
图 8 动态可调吸收 (a)石墨烯纳米盘阵列实现动态可调吸收增强[60]; (b)通过相变空间层实现可开关的超材料吸收器/发射器[141]; (c)基于相变材料锗锑碲超薄等离激元超构材料实现动态热辐射调控[132]
Fig. 8. Dynamically tune optical absorption: (a) Active tunable absorption enhancement with graphene nanodisk arrays[60]; (b) switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer[141]; (c) dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST[132].
图 9 动态可调偏振态 (a)自由可调宽带太赫兹波偏振旋转器[161]; (b)石墨烯电极驱动的宽带可调液晶太赫兹波片[87]; (c)非线性各向异性超构材料实现超快产生与转换光的偏振态[171]; (d)利用二氧化钒相变动态转换光的偏振态[146]
Fig. 9. Dynamically tune the polarization states of light: (a) Feely tunable broadband polarization rotator for terahertz waves[161]; (b) broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes[87]; (c) ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials[171]; (d) dynamically switching the polarization state of light based on the phase transition of vanadium dioxide[146].
图 10 动态可调手性 (a)动态调控非线性超构材料中手性[95]; (b)非手性相变超构材料实现超快调节圆二色性[127]; (c)可重构的三维等离激元超构分子[163]
Fig. 10. Dynamically tunable chirality: (a) Active control of chirality in nonlinear metamaterials[95]; (b) achiral phase change metamaterials for ultrafast tuning of giant circular conversion dichroism[127]; (c) reconfigurable 3D plasmonic metamolecules[163].
图 11 动态可调异常反射和折射 (a)基于相变材料的可调反射阵列[124]; (b)电调控导电氧化物超构表面[97]; (c)可拉伸衬底上的可调超构表面[148]
Fig. 11. Dynamically tunable anomaly reflection and refraction: (a) Phase change material based tunable reflectarray[124], reprinted with permission from Ref.[124] © The Optical Society; (b) gate-tunable conducting oxide metasurfaces[97]; (c) tunable metasurface on a stretchable substrate[148].
图 12 动态可调透镜 (a)基于径向偏振光照射的复合纳米环的在近场和远场之间的动态可调的等离激元透镜[142]; (b)基于相变材料的平面透镜调控光的相前[126]
Fig. 12. Active plasmonic metalenses: (a) dynamically tunable plasmonic lens between the near and far fields based on composite nanorings illuminated with radially polarized light[142]; (b) engineering the phase front of light with phase-change material based planar lenses[126].
图 13 动态可调偏振态 (a)基于石墨烯纳米结构动态可调的宽带中红外偏振变换器[59]; (b)通过光调控实现光偏振态转换的可重构超构表面[119]
Fig. 13. Dynamically tune the polarization states of light: (a) Dynamically tunable broadband mid-infrared cross polarization converter based on graphene nanostructures[59]; (b) reconfigurable metasurfaces that enable light polarization control by light[119].
-
[1] Ritchie R H 1957 Phys. Rev. 106 874
Google Scholar
[2] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667
Google Scholar
[3] Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357
Google Scholar
[4] Xu H, Käll M 2002 Phys. Rev. Lett. 89 246802
Google Scholar
[5] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
Google Scholar
[6] Ozbay E 2006 Science 311 189
Google Scholar
[7] Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82
Google Scholar
[8] Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X 2011 Nat. Mater. 10 110
Google Scholar
[9] Lu J, Xu C, Dai J, Li J, Wang Y, Lin Y, Li P 2015 ACS Photonics 2 73
Google Scholar
[10] Ren M, Pan C, Li Q, Cai W, Zhang X, Wu Q, Fan S, Xu J 2013 Opt. Lett. 38 3133
Google Scholar
[11] Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801
Google Scholar
[12] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)
[13] Liu S D, Cheng M T, Yang Z J, Wang Q Q 2008 Opt. Lett. 33 851
Google Scholar
[14] Guo X, Qiu M, Bao J, Wiley B J, Yang Q, Zhang X, Ma Y, Yu H, Tong L 2009 Nano Lett. 9 4515
Google Scholar
[15] Hu Q, Xu D H, Zhou Y, Peng R W, Fan R H, Fang N X, Wang Q J, Huang X R, Wang M 2013 Sci. Rep. 3 3095
Google Scholar
[16] Wei H, Tian X, Pan D, Chen L, Jia Z, Xu H 2015 Nano Lett. 15 560
Google Scholar
[17] Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193
Google Scholar
[18] Xue C H, Jiang H T, Lu H, Du G Q, Chen H 2013 Opt. Lett. 38 959
Google Scholar
[19] Lu C, Hu X, Shi K, Hu Q, Zhu R, Yang H, Gong Q 2015 Light Sci. Appl 4 e302
Google Scholar
[20] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392
Google Scholar
[21] Li Z Y 2015 EPL 110 14001
Google Scholar
[22] Gu Y, Huang L, Martin O J F, Gong Q 2010 Phys. Rev. B 81 193103
Google Scholar
[23] Yi M, Lu C, Gong Y, Qi Z, Cui Y 2014 Opt. Express 22 29627
Google Scholar
[24] Huang C P, Yin X G, Wang Q J, Huang H, Zhu Y Y 2010 Phys. Rev. Lett. 104 016402
Google Scholar
[25] Shi X, Han D, Dai Y, Yu Z, Sun Y, Chen H, Liu X, Zi J 2013 Opt. Express 21 28438
Google Scholar
[26] Cheng G, Qin W, Lin M H, Wei L, Fan X, Zhang H, Gwo S, Zeng C, Hou J G, Zhang Z 2017 Phys. Rev. Lett. 119 156803
Google Scholar
[27] Shi W B, Liu L Z, Peng R, Xu D H, Zhang K, Jing H, Fan R H, Huang X R, Wang Q J, Wang M 2018 Nano Lett. 18 1896
Google Scholar
[28] Liu Y, Zhang X 2011 Chem. Soc. Rev. 40 2494
Google Scholar
[29] Xiong X, Wang Z W, Fu S J, Wang M, Peng R W, Hao X P, Sun C 2011 Appl. Phys. Lett. 99 181905
Google Scholar
[30] Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534
Google Scholar
[31] Ma H F, Cui T J 2010 Nat. Commun. 1 21
Google Scholar
[32] Wu K, Cheng Q, Wang G P 2016 J. Opt. 18 044001
Google Scholar
[33] Sheng C, Liu H, Wang Y, Zhu S N, Genov D A 2013 Nat. Photonics 7 902
Google Scholar
[34] Bai Q, Chen J, Shen N H, Cheng C, Wang H T 2010 Opt. Express 18 2106
Google Scholar
[35] Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104
Google Scholar
[36] Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Adv. Mater. 25 3994
Google Scholar
[37] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426
Google Scholar
[38] Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photonics Rev. 9 713
Google Scholar
[39] Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227
Google Scholar
[40] Xie Z, Lei T, Si G, Wang X, Lin J, Min C, Yuan X 2017 ACS Photonics 4 2158
Google Scholar
[41] Chen H T, Taylor A J, Yu N 2016 Rep. Prog. Phys. 79 076401
Google Scholar
[42] Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026
[43] Jiang S C, Xiong X, Hu Y S, Jiang S W, Hu Y H, Xu D H, Peng R W, Wang M 2015 Phys. Rev. B 91 125421
Google Scholar
[44] Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405
Google Scholar
[45] Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917
Google Scholar
[46] Fan K, Padilla W J 2015 Mater. Today 18 39
Google Scholar
[47] Wuttig M, Bhaskaran H, Taubner T 2017 Nat. Photonics 11 465
Google Scholar
[48] Jiang N, Zhuo X, Wang J 2018 Chem. Rev. 118 3054
Google Scholar
[49] Strohfeldt N, Tittl A, Schäferling M, Neubrech F, Kreibig U, Griessen R, Giessen H 2014 Nano Lett. 14 1140
Google Scholar
[50] Sterl F, Strohfeldt N, Walter R, Griessen R, Tittl A, Giessen H 2015 Nano Lett. 15 7949
Google Scholar
[51] Duan X, Kamin S, Sterl F, Giessen H, Liu N 2016 Nano Lett. 16 1462
Google Scholar
[52] Chen Y, Duan X, Matuschek M, Zhou Y, Neubrech F, Duan H, Liu N 2017 Nano Lett. 17 5555
Google Scholar
[53] Li J, Kamin S, Zheng G, Neubrech F, Zhang S, Liu N 2018 Sci. Adv. 4 eaar6768
Google Scholar
[54] Yu P, Li J, Zhang S, Jin Z, Schütz G, Qiu C W, Hirscher M, Liu N 2018 Nano Lett. 18 4584
Google Scholar
[55] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630
Google Scholar
[56] Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotechnol. 7 330
Google Scholar
[57] Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, García de Abajo F J, Hillenbrand R, Koppens F H L 2012 Nature 487 77
Google Scholar
[58] Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82
Google Scholar
[59] Cheng H, Chen S, Yu P, Li J, Xie B, Li Z, Tian J 2013 Appl. Phys. Lett. 103 223102
Google Scholar
[60] Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, García de Abajo F J, Nordlander P, Zhu X, Halas N J 2014 Nano Lett. 14 299
Google Scholar
[61] Ni G X, Wang L, Goldflam M D, Wagner M, Fei Z, McLeod A S, Liu M K, Keilmann F, Özyilmaz B, Castro Neto A H, Hone J, Fogler M M, Basov D N 2016 Nat. Photonics. 10 244
Google Scholar
[62] Lundeberg M B, Gao Y, Asgari R, Tan C, van Duppen B, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens F H L 2017 Science 357 187
Google Scholar
[63] Iranzo D A, Nanot S, Dias E J C, Epstein I, Peng C, Efetov D K, Lundeberg M B, Parret R, Osmond J, Hong J Y, Kong J, Englund D R, Peres N M R, Koppens F H L 2018 Science 360 291
Google Scholar
[64] Ni G X, McLeod A S, Sun Z, Wang L, Xiong L, Post K W, Sunku S S, Jiang B Y, Hone J, Dean C R, Fogler M M, Basov D N 2018 Nature 557 530
Google Scholar
[65] Dorfs D, Härtling T, Miszta K, Bigall N C, Kim M R, Genovese A, Falqui A, Povia M, Manna L 2011 J. Am. Chem. Soc. 133 11175
Google Scholar
[66] Jain P K, Manthiram K, Engel J H, White S L, Faucheaux J A, Alivisatos A P 2013 Angew. Chem. Int. Ed. 52 13671
Google Scholar
[67] Garcia G, Buonsanti R, Runnerstrom E L, Mendelsberg R J, Llordes A, Anders A, Richardson T J, Milliron D J 2011 Nano Lett. 11 4415
Google Scholar
[68] Runnerstrom E L, Llordés A, Lounis S D, Milliron D J 2014 Chem. Commun. 50 10555
Google Scholar
[69] Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257
Google Scholar
[70] Zhou Y, Wang C, Xu D H, Fan R H, Zhang K, Peng R W, Hu Q, Wang M 2014 EPL 107 34007
Google Scholar
[71] Zhou Y, Dong Y Q, Zhang K, Peng R W, Hu Q, Wang M 2014 EPL 107 54001
Google Scholar
[72] Zhou Y, Dong Y Q, Fan R H, Hu Q, Peng R W, Wang M 2014 Appl. Phys. Lett. 105 041114
Google Scholar
[73] Miao Z, Wu Q, Li X, He Q, Ding K, An Z, Zhang Y, Zhou L 2015 Phys. Rev. X 5 041027
[74] Wang Z, Hu B, Li B, Liu W, Li X, Liu J, Wang Y 2016 Mater. Res. Express 3 115011
Google Scholar
[75] Kim T T, Oh S S, Kim H D, Park H S, Hess O, Min B, Zhang S 2017 Sci. Adv. 3 e1701377
Google Scholar
[76] Sherrott M C, Hon P W C, Fountaine K T, Garcia J C, Ponti S M, Brar V W, Sweatlock L A, Atwater H A 2017 Nano Lett. 17 3027
Google Scholar
[77] Zhou Y, Zhu Y Y, Zhang K, Wu H W, Peng R W, Fan R H, Wang M 2017 Opt. Express 25 012081
Google Scholar
[78] Zeng B, Huang Z, Singh A, Yao Y, Azad A K, Mohite A D, Taylor A J, Smith D R, Chen H T 2018 Light Sci. Appl. 7 51
Google Scholar
[79] Kossyrev P A, Yin A, Cloutier S G, Cardimona D A, Huang D, Alsing P M, Xu J M 2005 Nano Lett. 5 1978
Google Scholar
[80] Wang X, Kwon D H, Werner D H, Khoo I C, Kildishev A V, Shalaev V M 2007 Appl. Phys. Lett. 91 143122
Google Scholar
[81] Xiao S, Chettiar U K, Kildishev A V, Drachev V, Khoo I C, Shalaev V M 2009 Appl. Phys. Lett. 95 033115
Google Scholar
[82] Cetin A E, Mertiri A, Huang M, Erramilli S, Altug H 2013 Adv. Opt. Mater. 1 915
Google Scholar
[83] Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403
Google Scholar
[84] Si G, Zhao Y, Leong E S P, Liu Y J 2014 Materials 7 1296
Google Scholar
[85] Abass A, Rodriguez S R, Ako T, Aubert T, Verschuuren M, Van Thourhout D, Beeckman J, Hens Z, Rivas J G, Maes B 2014 Nano Lett. 14 5555
Google Scholar
[86] Khoo I C 2014 Prog. Quantum Electron. 38 77
Google Scholar
[87] Wang L, Lin X W, Hu W, Shao G H, Chen P, Liang L J, Jin B B, Wu P H, Qian H, Lu Y N, Liang X, Zheng Z G, Lu Y Q 2015 Light Sci. Appl. 4 e253
Google Scholar
[88] Franklin D, Chen Y, Vazquez-Guardado A, Modak S, Boroumand J, Xu D, Wu S T, Chanda D 2015 Nat. Commun. 6 7337
Google Scholar
[89] Sautter J, Staude I, Decker M, Rusak E, Neshev D N, Brener I, Kivshar Y S 2015 ACS Nano 9 4308
Google Scholar
[90] Bohn J, Bucher T, Chong K E, Komar A, Choi D Y, Neshev D N, Kivshar Y S, Pertsch T, Staude I 2018 Nano Lett. 18 3461
Google Scholar
[91] Abb M, Albella P, Aizpurua J, Muskens O L 2011 Nano Lett. 11 2457
Google Scholar
[92] Abb M, Wang Y, de Groot C H, Muskens O L 2014 Nat. Commun. 5 4869
Google Scholar
[93] Park J, Kang J H, Liu X, Brongersma M L 2015 Sci. Rep. 5 15754
Google Scholar
[94] Papadakis G T, Atwater H A 2015 Phys. Rev. B 92 184101
Google Scholar
[95] Zhu Y, Hu X, Chai Z, Yang H, Gong Q 2015 Appl. Phys. Lett. 106 091109
Google Scholar
[96] Guo P, Schaller R D, Ketterson J B, Chang R P H 2016 Nat. Photonics 10 267
Google Scholar
[97] Huang Y W, Lee H W H, Sokhoyan R, Pala R A, Thyagarajan K, Han S, Tsai D P, Atwater H A 2016 Nano Lett. 16 5319
Google Scholar
[98] Park J, Kang J H, Kim S J, Liu X, Brongersma M L 2017 Nano Lett. 17 407
Google Scholar
[99] Alam M Z, Schulz S A, Upham J, de Leon I, Boyd R W 2018 Nat. Photonics 12 79
Google Scholar
[100] Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401
Google Scholar
[101] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597
Google Scholar
[102] Zhang S, Zhou J, Park Y S, Rho J, Singh R, Nam S, Azad A K, Chen H T, Yin X, Taylor A J, Zhang X 2012 Nat. Commun. 3 942
Google Scholar
[103] Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J, Zhang W 2012 Nat. Commun. 3 1151
Google Scholar
[104] Iyer P P, Pendharkar M, Palmstrøm C J, Schuller J A 2017 Nat. Commun. 8 472
Google Scholar
[105] Lu Y J, Sokhoyan R, Cheng W H, Shirmanesh G K, Davoyan A R, Pala R A, Thyagarajan K, Atwater H A 2017 Nat. Commun. 8 1631
Google Scholar
[106] Shcherbakov M R, Liu S, Zubyuk V V, Vaskin A, Vabishchevich P P, Keeler G, Pertsch T, Dolgova T V, Staude I, Brener I, Fedyanin A A 2017 Nat. Commun. 8 17
Google Scholar
[107] Yang Y, Kelley K, Sachet E, Campione S, Luk T S, Maria J P, Sinclair M B, Brener I 2017 Nat. Photonics 11 390
Google Scholar
[108] Rahmani M, Xu L, Miroshnichenko A E, Komar A, Camacho-Morales R, Chen H, Zárate Y, Kruk S, Zhang G, Neshev D, Kivshar Y S 2017 Adv. Funct. Mater. 27 1700580
Google Scholar
[109] Coppens Z J, Valentine J G 2017 Adv. Mater. 29 1701275
Google Scholar
[110] Dintinger J, Robel I, Kamat P V, Genet C, Ebbesen T W 2006 Adv. Mater. 18 1645
Google Scholar
[111] Pala R A, Shimizu K T, Melosh N A, Brongersma M L 2008 Nano Lett. 8 1506
Google Scholar
[112] Leroux Y, Lacroix J C, Fave C, Stockhausen V, Félidj N, Grand J, Hohenau A, Krenn J R 2009 Nano Lett. 9 2144
Google Scholar
[113] Stockhausen V, Martin P, Ghilane J, Leroux Y, Randriamahazaka H, Grand J, Felidj N, Lacroix J C 2010 J. Am. Chem. Soc. 132 10224
Google Scholar
[114] Baba A, Tada K, Janmanee R, Sriwichai S, Shinbo K, Kato K, Kaneko F, Phanichphant S 2012 Adv. Funct. Mater. 22 4383
Google Scholar
[115] Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler P C, Li J, Palmer R, Korn D, Muehlbrandt S, van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J 2014 Nat. Photonics 8 229
Google Scholar
[116] Wang Q, Liu L, Wang Y, Liu P, Jiang H, Xu Z, Ma Z, Oren S, Chow E K C, Lu M, Dong L 2015 Sci. Rep. 5 18567
[117] Xu T, Walter E C, Agrawal A, Bohn C, Velmurugan J, Zhu W, Lezec H J, Talin A A 2016 Nat. Commun. 7 10479
Google Scholar
[118] Lu W, Jiang N, Wang J 2017 Adv. Mater. 29 1604862
Google Scholar
[119] Ren M X, Wu W, Cai W, Pi B, Zhang X Z, Xu J J 2017 Light Sci. Appl. 6 e16254
Google Scholar
[120] Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W, Watanabe T, Cui T, Cheng B, Saha S, Elder D L, Dalton L R, Boltasseva A, Shalaev V M, Kinsey N, Leuthold J 2018 Nature 556 483
Google Scholar
[121] Wuttig M, Yamada N 2007 Nat. Mater. 6 824
Google Scholar
[122] Michel A K U, Chigrin D N, Maß T W W, Schönauer K, Salinga M, Wuttig M, Taubner T 2013 Nano Lett. 13 3470
Google Scholar
[123] Cao T, Simpson R E, Cryan M J 2013 J. Opt. Soc. Am. B 30 439
Google Scholar
[124] Zou L, Cryan M, Klemm M 2014 Opt. Express 22 24142
Google Scholar
[125] Rudé M, Simpson R E, Quidant R, Pruneri V, Renger J 2015 ACS Photon. 2 669
Google Scholar
[126] Chen Y, Li X, Sonnefraud Y, Fernández-Domínguez A I, Luo X, Hong M, Maier S A 2015 Sci. Rep. 5 8660
Google Scholar
[127] Cao T, Wei C, Mao L 2015 Sci. Rep. 5 14666
Google Scholar
[128] Yin X, Schäferling M, Michel A K U, Tittl A, Wuttig M, Taubner T, Giessen H 2015 Nano Lett. 15 4255
Google Scholar
[129] Tittl A, Michel A K U, Schäferling M, Yin X, Gholipour B, Cui L, Wuttig M, Taubner T, Neubrech F, Giessen H 2015 Adv. Mater. 27 4597
Google Scholar
[130] Cao T, Bao J, Mao L, Zhang T, Novitsky A, Nieto-Vesperinas M, Qiu C W 2016 ACS Photonics 3 1934
Google Scholar
[131] Yin X, Steinle T, Huang L, Taubner T, Wuttig M, Zentgraf T, Giessen H 2017 Light Sci. Appl. 6 e17016
Google Scholar
[132] Qu Y, Li Q, Du K, Cai L, Lu J, Qiu M 2017 Laser Photonics. Rev. 11 1700091
Google Scholar
[133] Tian J, Luo H, Yang Y, Ding F, Qu Y, Zhao D, Qiu M, Bozhevolnyi S I 2019 Nat. Commun. 10 396
Google Scholar
[134] Suh J Y, Donev E U, Lopez R, Feldman L C, Haglund R F 2006 Appl. Phys. Lett. 88 133115
Google Scholar
[135] Dicken M J, Aydin K, Pryce I M, Sweatlock L A, Boyd E M, Walavalkar S, Ma J, Atwater H A 2009 Opt. Express 17 18330
Google Scholar
[136] Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Ventra M D, Basov D N 2009 Science 325 1518
Google Scholar
[137] Huang W X, Yin X G, Huang C P, Wang Q J, Miao T F, Zhu Y Y 2010 Appl. Phys. Lett. 96 261908
Google Scholar
[138] Liu M, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345
Google Scholar
[139] Ferrara D W, Nag J, MacQuarrie E R, Kaye A B, Haglund R F 2013 Nano Lett. 13 4169
Google Scholar
[140] Kats M A, Blanchard R, Genevet P, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F 2013 Opt. Lett. 38 368
Google Scholar
[141] Wang H, Yang Y, Wang L 2014 Appl. Phys. Lett. 105 071907
Google Scholar
[142] Yu P, Chen S, Li J, Cheng H, Li Z, Liu W, Tian J 2015 Plasmonics 10 625
Google Scholar
[143] Zhu Y, Hu X, Yang H, Gong Q 2015 J. Opt. 17 105101
Google Scholar
[144] Kim S J, Yun H, Park K, Hong J, Yun J G, Lee K, Kim J, Jeong S J, Mun S E, Sung J, Lee Y W, Lee B 2017 Sci. Rep. 7 43723
Google Scholar
[145] Shu F Z, Yu F F, Peng R W, Zhu Y Y, Xiong B, Fan R H, Wang Z H, Liu Y, Wang M 2018 Adv. Opt. Mater. 6 1700939
Google Scholar
[146] Jia Z Y, Shu F Z, Gao Y J, Cheng F, Peng R W, Fan R H, Liu Y, Wang M 2018 Phys. Rev. Appl. 9 034009
Google Scholar
[147] Zhu L, Kapraun J, Ferrara J, Chang-Hasnain C J 2015 Optica 2 255
Google Scholar
[148] Ee H S, Agarwal R 2016 Nano Lett. 16 2818
Google Scholar
[149] Kamali S M, Arbabi E, Arbabi A, Horie Y, Faraon A 2016 Laser Photonics Rev. 10 1002
Google Scholar
[150] Malek S C, Ee H S, Agarwal R 2017 Nano Lett. 17 3641
Google Scholar
[151] Tseng M L, Yang J, Semmlinger M, Zhang C, Nordlander P, Halas N J 2017 Nano Lett. 17 6034
Google Scholar
[152] She A, Zhang S, Shian S, Clarke D R, Capasso F 2018 Sci. Adv. 4 eaap9957
Google Scholar
[153] Laible F, Gollmer D A, Dickreuter S, Kern D P, Fleischer M 2018 Nanoscale 10 14915
Google Scholar
[154] Liu X, Huang Z, Zhu C, Wang L, Zang J 2018 Nano Lett. 18 1435
Google Scholar
[155] Gao F, Li D, Peng R W, Hu Q, Wei K, Wang Q J, Zhu Y Y, Wang M 2009 Appl. Phys. Lett. 95 011104
Google Scholar
[156] Ou J Y, Plum E, Zhang J, Zheludev N I 2013 Nat. Nanotechnol. 8 252
Google Scholar
[157] Ma F, Lin Y S, Zhang X, Lee C 2014 Light Sci. Appl. 3 e171
Google Scholar
[158] Kan T, Isozaki A, Kanda N, Nemoto N, Konishi K, Takahashi H, Kuwata-Gonokami M, Matsumoto K, Shimoyama I 2015 Nat. Commun. 6 8422
Google Scholar
[159] Dennis B S, Haftel M I, Czaplewski D A, Lopez D, Blumberg G, Aksyuk V A 2015 Nat. Photonics 9 267
Google Scholar
[160] Kern J, Kullock R, Prangsma J, Emmerling M, Kamp M, Hecht B 2015 Nat. Photonics 9 582
Google Scholar
[161] Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2015 Adv. Mater. 27 1201
Google Scholar
[162] Zheludev N I, Plum E 2016 Nat. Nanotechnol. 11 16
Google Scholar
[163] Kuzyk A, Schreiber R, Zhang H, Govorov A O, Liedl T, Liu N 2014 Nat. Mater. 13 862
Google Scholar
[164] Holsteen A L, Raza S, Fan P, Kik P G, Brongersma M L 2017 Science 358 1407
Google Scholar
[165] Manjappa M, Pitchappa P, Singh N, Wang N, Zheludev N I, Lee C, Singh R 2018 Nat. Commun. 9 4056
Google Scholar
[166] Kristensen A, Yang J K W, Bozhevolnyi S I, Link S, Nordlander P, Halas N J, Mortensen N A 2016 Nat. Rev. Mater. 2 16088
[167] Novotny L, van Hulst N 2011 Nat. Photonics 5 83
Google Scholar
[168] Li Z, Zhou Y, Qi H, Pan Q, Zhang Z, Shi N N, Lu M, Stein A, Li C Y, Ramanathan S, Yu N 2016 Adv. Mater. 28 9117
Google Scholar
[169] Dicken M J, Sweatlock L A, Pacifici D, Lezec H J, Bhattacharya K, Atwater H A 2008 Nano Lett. 8 4048
Google Scholar
[170] Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98
[171] Nicholls L H, Rodríguez-Fortuño F J, Nasir M E, Córdova-Castro R M, Olivier N, Wurtz G A, Zayats A V 2017 Nat. Photonics 11 628
Google Scholar
[172] Wang Z, Cheng F, Winsor T, Liu Y 2016 Nanotechnology 27 412001
Google Scholar
[173] Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S, Luk'yanchuk B 2016 Science 354 aag2472
Google Scholar
[174] Xia D, Ku Z, Lee S C, Brueck S R J 2011 Adv. Mater. 23 147
Google Scholar
[175] Klinkova A, Choueiri R M, Kumacheva E 2014 Chem. Soc. Rev. 43 3976
Google Scholar
[176] Chen F, Li J, Yu F, Zhao D, Wang F, Chen Y, Peng R W, Wang M 2016 Adv. Mater. 28 7193
Google Scholar
[177] Guo L J 2007 Adv. Mater. 19 495
计量
- 文章访问数: 17322
- PDF下载量: 634
- 被引次数: 0