-
Optical Tamm state (OTS) refers to a kind of interface state between the metal layer and the photonic crystal (PC) reflectors. Given the matching conditions being satisfied, the electromagnetic waves tend to tunnel through the metal-PC hetero-structure efficiently. Quite different from the conventional surface plasmon polaritons (SPPs) on metal surface, OTSs can be excited directly by normally incident propagating waves for both TE and TM polarizations to occur. In the meantime, strong electromagnetic (EM) localization around the interface can be achieved, leading to potential applications such as polariton lasers, enhancement of Faraday rotation, various nonlinear effects, and so on.#br#To further enhance the EM localization around the interface, some well designed artificial structures are patterned on the thin metal layer. For instance, confined Tamm plasmon modes with the aid of metallic microdisks are proposed by Gazzano et al. to control the spontaneous optical emission. Moreover, in 2013 it was also demonstrated that planar plasmonic metamaterials (PPM) with electromagnetically-induced-reflection-like (EIR-like) dispersion can boost the Q-factor of OTS tunneling mode, as well as the EM localization around the interface between planar plasmonic metamaterials and PC. Both these methods can be understood in the same scheme:the structure-induced dispersion provides exotic power of modulating the propagation of OTS.#br#In this paper, the enhancement of optical Tamm state and related lasing effect is investigated by introducing planar plasmonic metamaterials with EIR-like dispersion. The planar plasmonic metamaterials are achieved by periodic patterning some plasmonic units on the planar metal layer. Through fine tuning each unit cell, EIR-like dispersion can be achieved, making the properties of hetero-structure more tunable. One-dimensional photonic crystals composed of TiO2/SiO2 are also designed properly to support the optical Tamm state in PPM-PC hetero-structure. First, to analyze the possibility of enhancing local electromagnetic field density of optical Tamm state, a transfer matrix method is performed when EIR-like dispersion of PPM structure is hired. Next, full wave simulations based on FDTD method are also carried out to verify a hetero-structure composed of PPM and one-dimensional photonic crystal embbed with gain media. By introducing gain medium into (or near) the PPM structure, where the maximum local electromagnetic field density exists, the lasing effect is found obviously enhanced. Better emitting efficiency and monochromic response can be observed compared to the common metal-PC hetero-structure. These features make our structure promising to reduce the lasing threshold, enhance the fluorescence, and so on.
[1] Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2005 Opt. Lett. 30 3356
[2] Shalaev V M 2007 Nat. Photonics 1 41
[3] Soukoulis C M, Linden S, Wegener M 2007 Science 315 47
[4] Liu H, Genov D A, Wu D M, Liu Y M, Steele J M, Sun C, Zhu S N, Zhang X 2006 Phys. Rev. Lett. 97 243902
[5] Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788
[6] Zhang X, Liu Z 2008 Nat. Materials 7 435
[7] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
[8] Liu L X,Dong L J, Liu Y H 2012 Acta Phys. Sin. 61 134210 (in Chinese) [刘丽想, 董丽娟, 刘艳红 2012 61 134210]
[9] Alù A, Engheta N 2003 IEEE Trans. Antennas Propagat. 51 2558
[10] Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415
[11] Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram R A, Chamberlain J, Yu M, Egorov A, Vasil’ev A P, Mikhrin V S, Kavokin A V 2008 Appl. Phys. Lett. 92 251112
[12] Jiang Y,Zhang W L,Zhu Y Y 2013 Acta Phys. Sin. 62 167303 (in Chinese) [蒋瑶, 张伟利, 朱叶雨 2013 62 167303]
[13] Lu H, Xue C H, Wu Y G, Chen S Q, Zhang X L, Jiang H T, Tian J G, Chen H 2012 Opt. Commun. 285 5416
[14] Xue C H, Jiang H T, Chen H 2011 Opt. Lett. 36 855
[15] Dong L J, Jiang H T, Chen H, Shi Y L 2010 J. Appl. Phys. 107 093101
[16] Symonds C, Lheureux G, Hugonin J P, Greffet J J, Laverdant J, Brucoli G, Lemaitre A, Senellart P, Bellessa J 2013 Nano Lett. 13 3179
[17] Oulton1 R F, Sorger1 V J, Zentgraf1 T, Ma R M, Gladden1 C, Dai L, Bartal1G, Zhang X 2009 Nature 461 629
[18] Gazzano O, Vasconcellos S M de, Gauthron K, Symonds C, Bloch J, Voisin P, Bellessa J, Lemaitre A, Senellart P 2011 Phys. Rev. Lett. 107 247402
[19] Lu H, Li Y H, Feng T H, Wang S H, Xue C H, Kang X B, Du G Q, Jiang H T, Chen H 2013 Appl. Phys. Lett. 102 111909
[20] Arris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107
[21] Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401
[22] Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H 2010 Nano Lett. 10 1103
[23] Guo J Y, Chen H, Li H Q 2008 Chin. Phys. B 17 2544
[24] Smith D R, Schultz S, Markoš P, Soukoulis C M 2002 Phys. Rev. B 65 195104
[25] Purcell E M 2014 J. Opt. 16 065003
[26] Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W, Ward C A 1983 Appl. Opt. 22 1099
[27] Du G Q, Jiang H T, Wang Z S, Yang Y P, Wang Z L, Lin H Q, Chen H 2010 J. Opt. Soc. Am. B. 27 1757
[28] Zheludev N I, Prosvirnin S L, Papasimakis N, Fedotov V A 2008 Nat. Photonics 2 351
[29] Nezhad M P, Tetz K, Fainman Y 2004 Opt. Express 12 4072
[30] Dong Z G, Liu H, Li T 2009 Phys. Rev. B 80 235116
-
[1] Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2005 Opt. Lett. 30 3356
[2] Shalaev V M 2007 Nat. Photonics 1 41
[3] Soukoulis C M, Linden S, Wegener M 2007 Science 315 47
[4] Liu H, Genov D A, Wu D M, Liu Y M, Steele J M, Sun C, Zhu S N, Zhang X 2006 Phys. Rev. Lett. 97 243902
[5] Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788
[6] Zhang X, Liu Z 2008 Nat. Materials 7 435
[7] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
[8] Liu L X,Dong L J, Liu Y H 2012 Acta Phys. Sin. 61 134210 (in Chinese) [刘丽想, 董丽娟, 刘艳红 2012 61 134210]
[9] Alù A, Engheta N 2003 IEEE Trans. Antennas Propagat. 51 2558
[10] Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415
[11] Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram R A, Chamberlain J, Yu M, Egorov A, Vasil’ev A P, Mikhrin V S, Kavokin A V 2008 Appl. Phys. Lett. 92 251112
[12] Jiang Y,Zhang W L,Zhu Y Y 2013 Acta Phys. Sin. 62 167303 (in Chinese) [蒋瑶, 张伟利, 朱叶雨 2013 62 167303]
[13] Lu H, Xue C H, Wu Y G, Chen S Q, Zhang X L, Jiang H T, Tian J G, Chen H 2012 Opt. Commun. 285 5416
[14] Xue C H, Jiang H T, Chen H 2011 Opt. Lett. 36 855
[15] Dong L J, Jiang H T, Chen H, Shi Y L 2010 J. Appl. Phys. 107 093101
[16] Symonds C, Lheureux G, Hugonin J P, Greffet J J, Laverdant J, Brucoli G, Lemaitre A, Senellart P, Bellessa J 2013 Nano Lett. 13 3179
[17] Oulton1 R F, Sorger1 V J, Zentgraf1 T, Ma R M, Gladden1 C, Dai L, Bartal1G, Zhang X 2009 Nature 461 629
[18] Gazzano O, Vasconcellos S M de, Gauthron K, Symonds C, Bloch J, Voisin P, Bellessa J, Lemaitre A, Senellart P 2011 Phys. Rev. Lett. 107 247402
[19] Lu H, Li Y H, Feng T H, Wang S H, Xue C H, Kang X B, Du G Q, Jiang H T, Chen H 2013 Appl. Phys. Lett. 102 111909
[20] Arris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107
[21] Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401
[22] Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H 2010 Nano Lett. 10 1103
[23] Guo J Y, Chen H, Li H Q 2008 Chin. Phys. B 17 2544
[24] Smith D R, Schultz S, Markoš P, Soukoulis C M 2002 Phys. Rev. B 65 195104
[25] Purcell E M 2014 J. Opt. 16 065003
[26] Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W, Ward C A 1983 Appl. Opt. 22 1099
[27] Du G Q, Jiang H T, Wang Z S, Yang Y P, Wang Z L, Lin H Q, Chen H 2010 J. Opt. Soc. Am. B. 27 1757
[28] Zheludev N I, Prosvirnin S L, Papasimakis N, Fedotov V A 2008 Nat. Photonics 2 351
[29] Nezhad M P, Tetz K, Fainman Y 2004 Opt. Express 12 4072
[30] Dong Z G, Liu H, Li T 2009 Phys. Rev. B 80 235116
Catalog
Metrics
- Abstract views: 6977
- PDF Downloads: 682
- Cited By: 0