Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical Tamm state and related lasing effect enhanced by planar plasmonic metamaterials

Zhang Zhen-Qing Lu Hai Wang Shao-Hua Wei Ze-Yong Jiang Hai-Tao Li Yun-Hui

Citation:

Optical Tamm state and related lasing effect enhanced by planar plasmonic metamaterials

Zhang Zhen-Qing, Lu Hai, Wang Shao-Hua, Wei Ze-Yong, Jiang Hai-Tao, Li Yun-Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Optical Tamm state (OTS) refers to a kind of interface state between the metal layer and the photonic crystal (PC) reflectors. Given the matching conditions being satisfied, the electromagnetic waves tend to tunnel through the metal-PC hetero-structure efficiently. Quite different from the conventional surface plasmon polaritons (SPPs) on metal surface, OTSs can be excited directly by normally incident propagating waves for both TE and TM polarizations to occur. In the meantime, strong electromagnetic (EM) localization around the interface can be achieved, leading to potential applications such as polariton lasers, enhancement of Faraday rotation, various nonlinear effects, and so on.#br#To further enhance the EM localization around the interface, some well designed artificial structures are patterned on the thin metal layer. For instance, confined Tamm plasmon modes with the aid of metallic microdisks are proposed by Gazzano et al. to control the spontaneous optical emission. Moreover, in 2013 it was also demonstrated that planar plasmonic metamaterials (PPM) with electromagnetically-induced-reflection-like (EIR-like) dispersion can boost the Q-factor of OTS tunneling mode, as well as the EM localization around the interface between planar plasmonic metamaterials and PC. Both these methods can be understood in the same scheme:the structure-induced dispersion provides exotic power of modulating the propagation of OTS.#br#In this paper, the enhancement of optical Tamm state and related lasing effect is investigated by introducing planar plasmonic metamaterials with EIR-like dispersion. The planar plasmonic metamaterials are achieved by periodic patterning some plasmonic units on the planar metal layer. Through fine tuning each unit cell, EIR-like dispersion can be achieved, making the properties of hetero-structure more tunable. One-dimensional photonic crystals composed of TiO2/SiO2 are also designed properly to support the optical Tamm state in PPM-PC hetero-structure. First, to analyze the possibility of enhancing local electromagnetic field density of optical Tamm state, a transfer matrix method is performed when EIR-like dispersion of PPM structure is hired. Next, full wave simulations based on FDTD method are also carried out to verify a hetero-structure composed of PPM and one-dimensional photonic crystal embbed with gain media. By introducing gain medium into (or near) the PPM structure, where the maximum local electromagnetic field density exists, the lasing effect is found obviously enhanced. Better emitting efficiency and monochromic response can be observed compared to the common metal-PC hetero-structure. These features make our structure promising to reduce the lasing threshold, enhance the fluorescence, and so on.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB922001), the National Natural Science Foundation of China (Grant Nos. 51377003, 11234010, 61137003, 11404102), the Natural Science Foundation of Henan Province, China (Grant No. 14A140002), and the Fundamental Research Funds for the Central Universities.
    [1]

    Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2005 Opt. Lett. 30 3356

    [2]

    Shalaev V M 2007 Nat. Photonics 1 41

    [3]

    Soukoulis C M, Linden S, Wegener M 2007 Science 315 47

    [4]

    Liu H, Genov D A, Wu D M, Liu Y M, Steele J M, Sun C, Zhu S N, Zhang X 2006 Phys. Rev. Lett. 97 243902

    [5]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788

    [6]

    Zhang X, Liu Z 2008 Nat. Materials 7 435

    [7]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [8]

    Liu L X,Dong L J, Liu Y H 2012 Acta Phys. Sin. 61 134210 (in Chinese) [刘丽想, 董丽娟, 刘艳红 2012 61 134210]

    [9]

    Alù A, Engheta N 2003 IEEE Trans. Antennas Propagat. 51 2558

    [10]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [11]

    Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram R A, Chamberlain J, Yu M, Egorov A, Vasil’ev A P, Mikhrin V S, Kavokin A V 2008 Appl. Phys. Lett. 92 251112

    [12]

    Jiang Y,Zhang W L,Zhu Y Y 2013 Acta Phys. Sin. 62 167303 (in Chinese) [蒋瑶, 张伟利, 朱叶雨 2013 62 167303]

    [13]

    Lu H, Xue C H, Wu Y G, Chen S Q, Zhang X L, Jiang H T, Tian J G, Chen H 2012 Opt. Commun. 285 5416

    [14]

    Xue C H, Jiang H T, Chen H 2011 Opt. Lett. 36 855

    [15]

    Dong L J, Jiang H T, Chen H, Shi Y L 2010 J. Appl. Phys. 107 093101

    [16]

    Symonds C, Lheureux G, Hugonin J P, Greffet J J, Laverdant J, Brucoli G, Lemaitre A, Senellart P, Bellessa J 2013 Nano Lett. 13 3179

    [17]

    Oulton1 R F, Sorger1 V J, Zentgraf1 T, Ma R M, Gladden1 C, Dai L, Bartal1G, Zhang X 2009 Nature 461 629

    [18]

    Gazzano O, Vasconcellos S M de, Gauthron K, Symonds C, Bloch J, Voisin P, Bellessa J, Lemaitre A, Senellart P 2011 Phys. Rev. Lett. 107 247402

    [19]

    Lu H, Li Y H, Feng T H, Wang S H, Xue C H, Kang X B, Du G Q, Jiang H T, Chen H 2013 Appl. Phys. Lett. 102 111909

    [20]

    Arris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107

    [21]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401

    [22]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H 2010 Nano Lett. 10 1103

    [23]

    Guo J Y, Chen H, Li H Q 2008 Chin. Phys. B 17 2544

    [24]

    Smith D R, Schultz S, Markoš P, Soukoulis C M 2002 Phys. Rev. B 65 195104

    [25]

    Purcell E M 2014 J. Opt. 16 065003

    [26]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W, Ward C A 1983 Appl. Opt. 22 1099

    [27]

    Du G Q, Jiang H T, Wang Z S, Yang Y P, Wang Z L, Lin H Q, Chen H 2010 J. Opt. Soc. Am. B. 27 1757

    [28]

    Zheludev N I, Prosvirnin S L, Papasimakis N, Fedotov V A 2008 Nat. Photonics 2 351

    [29]

    Nezhad M P, Tetz K, Fainman Y 2004 Opt. Express 12 4072

    [30]

    Dong Z G, Liu H, Li T 2009 Phys. Rev. B 80 235116

  • [1]

    Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2005 Opt. Lett. 30 3356

    [2]

    Shalaev V M 2007 Nat. Photonics 1 41

    [3]

    Soukoulis C M, Linden S, Wegener M 2007 Science 315 47

    [4]

    Liu H, Genov D A, Wu D M, Liu Y M, Steele J M, Sun C, Zhu S N, Zhang X 2006 Phys. Rev. Lett. 97 243902

    [5]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788

    [6]

    Zhang X, Liu Z 2008 Nat. Materials 7 435

    [7]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [8]

    Liu L X,Dong L J, Liu Y H 2012 Acta Phys. Sin. 61 134210 (in Chinese) [刘丽想, 董丽娟, 刘艳红 2012 61 134210]

    [9]

    Alù A, Engheta N 2003 IEEE Trans. Antennas Propagat. 51 2558

    [10]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [11]

    Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram R A, Chamberlain J, Yu M, Egorov A, Vasil’ev A P, Mikhrin V S, Kavokin A V 2008 Appl. Phys. Lett. 92 251112

    [12]

    Jiang Y,Zhang W L,Zhu Y Y 2013 Acta Phys. Sin. 62 167303 (in Chinese) [蒋瑶, 张伟利, 朱叶雨 2013 62 167303]

    [13]

    Lu H, Xue C H, Wu Y G, Chen S Q, Zhang X L, Jiang H T, Tian J G, Chen H 2012 Opt. Commun. 285 5416

    [14]

    Xue C H, Jiang H T, Chen H 2011 Opt. Lett. 36 855

    [15]

    Dong L J, Jiang H T, Chen H, Shi Y L 2010 J. Appl. Phys. 107 093101

    [16]

    Symonds C, Lheureux G, Hugonin J P, Greffet J J, Laverdant J, Brucoli G, Lemaitre A, Senellart P, Bellessa J 2013 Nano Lett. 13 3179

    [17]

    Oulton1 R F, Sorger1 V J, Zentgraf1 T, Ma R M, Gladden1 C, Dai L, Bartal1G, Zhang X 2009 Nature 461 629

    [18]

    Gazzano O, Vasconcellos S M de, Gauthron K, Symonds C, Bloch J, Voisin P, Bellessa J, Lemaitre A, Senellart P 2011 Phys. Rev. Lett. 107 247402

    [19]

    Lu H, Li Y H, Feng T H, Wang S H, Xue C H, Kang X B, Du G Q, Jiang H T, Chen H 2013 Appl. Phys. Lett. 102 111909

    [20]

    Arris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107

    [21]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401

    [22]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H 2010 Nano Lett. 10 1103

    [23]

    Guo J Y, Chen H, Li H Q 2008 Chin. Phys. B 17 2544

    [24]

    Smith D R, Schultz S, Markoš P, Soukoulis C M 2002 Phys. Rev. B 65 195104

    [25]

    Purcell E M 2014 J. Opt. 16 065003

    [26]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W, Ward C A 1983 Appl. Opt. 22 1099

    [27]

    Du G Q, Jiang H T, Wang Z S, Yang Y P, Wang Z L, Lin H Q, Chen H 2010 J. Opt. Soc. Am. B. 27 1757

    [28]

    Zheludev N I, Prosvirnin S L, Papasimakis N, Fedotov V A 2008 Nat. Photonics 2 351

    [29]

    Nezhad M P, Tetz K, Fainman Y 2004 Opt. Express 12 4072

    [30]

    Dong Z G, Liu H, Li T 2009 Phys. Rev. B 80 235116

  • [1] Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Acta Physica Sinica, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [2] Zhang Lian,  Wang Hua-Yu,  Wang Ning,  Tao Can,  Zhai Xue-Lin,  Ma Ping-Zhun,  Zhong Ying,  Liu Hai-Tao. Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [3] Guo Qi-Qi, Chen Yi-Hang. Enhanced nonlinear optical effects based on strong coupling between epsilon-near-zero mode and gap surface plasmons. Acta Physica Sinica, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [4] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [5] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [6] Zhang Ruo-Yu, Li Pei-Li, Gao Hui. Research on acousto-optic switch based on optical tamm state. Acta Physica Sinica, 2020, 69(16): 164204. doi: 10.7498/aps.69.20200396
    [7] Zhang Bao-Bao, Zhang Cheng-Yun, Zhang Zheng-Long, Zheng Hai-Rong. Surface plasmon mediated chemical reaction. Acta Physica Sinica, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [8] Shu Fang-Zhou, Fan Ren-Hao, Wang Jia-Nan, Peng Ru-Wen, Wang Mu. Advances in dynamically tunable plasmonic materials and devices. Acta Physica Sinica, 2019, 68(14): 147303. doi: 10.7498/aps.68.20190469
    [9] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [10] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [11] Zhang Wen-Jun, Gao Long, Wei Hong, Xu Hong-Xing. Modulation of propagating surface plasmons. Acta Physica Sinica, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [12] Geng Yi-Fei, Wang Zhu-Ning, Ma Yao-Guang, Gao Fei. Topological surface plasmon polaritons. Acta Physica Sinica, 2019, 68(22): 224101. doi: 10.7498/aps.68.20191085
    [13] Wang Chong, Xing Qiao-Xia, Xie Yuan-Gang, Yan Hu-Gen. Spectroscopic studies of plasmons in topological materials. Acta Physica Sinica, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [14] Yang Xiao-Xia, Kong Xiang-Tian, Dai Qing. Optical properties of graphene plasmons and their potential applications. Acta Physica Sinica, 2015, 64(10): 106801. doi: 10.7498/aps.64.106801
    [15] Wang Wen-Jie, Wang Jia-Fu, Yan Ming-Bao, Lu Lei, Ma Hua, Qu Shao-Bo, Chen Hong-Ya, Xu Cui-Lian. Ultra-thin multiband metamaterial absorber based on multi-order plasmon resonances. Acta Physica Sinica, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [16] Sun Xue-Fei, Wang Lu-Xia. Surface plasmon enhancement effect in molecular excitation. Acta Physica Sinica, 2014, 63(9): 097301. doi: 10.7498/aps.63.097301
    [17] Zhu Hua, Yan Zhen-Dong, Zhan Peng, Wang Zhen-Lin. Enhanced third harmonic generation by localized surface plasmon excitation. Acta Physica Sinica, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [18] Jiang Yao, Zhang Wei-Li, Zhu Ye-Yu. Optical Tamm state theory study on asymmetric DBR-metal-DBR structure. Acta Physica Sinica, 2013, 62(16): 167303. doi: 10.7498/aps.62.167303
    [19] Han Qing-Yao, Tang Jun-Chao, Zhang Chao, Wang Chuan, Ma Hai-Qiang, Yu Li, Jiao Rong-Zhen. The effects of local density of states on surface plasmon polaritons. Acta Physica Sinica, 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [20] REN YAN-RU, YIN DAO-LE. CONDITION FOR THE FORMATION OF ACOUSTIC PLASMONS IN METALS. Acta Physica Sinica, 1981, 30(4): 545-548. doi: 10.7498/aps.30.545
Metrics
  • Abstract views:  6977
  • PDF Downloads:  682
  • Cited By: 0
Publishing process
  • Received Date:  29 September 2014
  • Accepted Date:  05 December 2014
  • Published Online:  05 June 2015

/

返回文章
返回
Baidu
map