搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于类电磁诱导透明的双频段太赫兹超材料的传感和慢光特性

孙占硕 王鑫 王俊林 樊勃 张宇 冯瑶

引用本文:
Citation:

基于类电磁诱导透明的双频段太赫兹超材料的传感和慢光特性

孙占硕, 王鑫, 王俊林, 樊勃, 张宇, 冯瑶

Sensing and slow light properties of dual-band terahertz metamaterials based on electromagnetically induced transparency-like

Sun Zhan-Shuo, Wang Xin, Wang Jun-Lin, Fan Bo, Zhang Yü, Feng Yao
PDF
HTML
导出引用
  • 提出并研究了一种由三组明模组成的类电磁诱导透明太赫兹超材料结构. 两组具有相似共振频率的明模为两个弱杂化态, 能量在两个共振点之间来回振荡, 产生相消干涉, 在两个共振点之间产生透射窗口. 该超材料的三组明模两两耦合干涉产生双频段的类电磁诱导透明效应. 根据仿真曲线和电场分布, 分析了超材料的类电磁诱导透明形成机理. 此外, 通过仿真和计算研究了超材料的传感特性, 在待测物的最佳厚度下, 两个类电磁诱导透明窗口的折射率灵敏度可高达451.92和545.31 GHz/RIU. 通过对6种石油产品的传感仿真, 验证了双频段超材料比单频段超材料在介电常数匹配方面更具有优势. 还研究了所设计的超材料在慢光效应下的特性. 这两个窗口的最大群时延分别可达9.98和6.23 ps, 此超材料在高灵敏度传感器和慢光器件领域具有重要的应用价值.
    Electromagnetically induced transparency (EIT) is a quantum interference phenomenon in a three-level atomic system. The generation of quantum interference effect significantly reduces the light absorptivity of the specific frequency that is strongly absorbed, and produces a sharp “transmission window” in the resonance absorption region. The EIT is usually accompanied by strong dispersion, which significantly reduces the group velocity of light and enhances the nonlinear interaction. The EIT phenomenon of atomic system usually needs to be observed at very low temperature or high intensity laser, which is a very serious challenge for the application of EIT technology. The simulation of electromagnetically induced transparency using metamaterials can effectively break through these limitations.In this work, an electromagnetically induced transparency-like terahertz metamaterial structure with three bright modes is proposed and investigated. Two weakly hybrid states are composed of two bright modes with similar resonant frequencies. The energy oscillates back and forth between the two modes, and a transparent window is generated between the two resonance points. The designed metamaterial is composed of three groups of bright modes with adjacent resonant frequencies, and the three groups of bright modes are coupled to produce two transparent windows. The electromagnetically induced transparency-like formation mechanism is analyzed based on the simulation curve and electric field distribution. In addition, the sensing properties of metamaterial are determined by simulation and calculation, and the refractive index sensitivities of the two windows can be as high as 451.92 GHz/RIU and 545.31 GHz/RIU under the optimal thickness of the measured substances. Through the sensing simulation of six petroleum products, it is verified that the dual-band has more excellent advantages in dielectric constant matching than the single frequency band. The characteristics of the designed metamaterial in the slow light effect are also studied. The maximum group delay times of the two windows can reach 9.98 ps and 6.23 ps. Therefore, the structure is considered to have an important application value in the field of high sensitivity sensors and slow light devices.
      通信作者: 王鑫, wangxin219@imu.edu.cn ; 王俊林, wangjunlin@imu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51965047)、内蒙古自然科学基金(批准号: 2021MS06012)和内蒙古自治区科技计划项目(批准号: 2020GG0185)资助的课题.
      Corresponding author: Wang Xin, wangxin219@imu.edu.cn ; Wang Jun-Lin, wangjunlin@imu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51965047), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2021MS06012), and the Science and Technology Planning Project of Inner Mongolia Autonomous Region, China (Grant No. 2020GG0185).
    [1]

    Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [2]

    Xiao M, Li Y Q, Jin S Z, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666Google Scholar

    [3]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594Google Scholar

    [4]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar

    [5]

    Lin X Q, Chen Z, Yu J W, Liu P Q, Li P F, Chen Z Z 2016 IEEE Sens. J. 16 293Google Scholar

    [6]

    Lin X Q, Peng J, Chen Z, Yu J W, Yang X F 2018 IEEE Sens. J. 18 9251Google Scholar

    [7]

    Li H M, Liu S B, Liu S Y, Zhang H F 2014 Appl. Phys. Lett. 105 133514Google Scholar

    [8]

    Zhang F L, He X, Zhou X, Zhou Y L, An S, Yu G Y, Pang L N 2013 Appl. Phys. Lett. 103 221904Google Scholar

    [9]

    Longdell J J, Fraval E, Sellars M J, Manson N B 2005 Phys. Rev. Lett. 95 063601Google Scholar

    [10]

    Ma J Y, Qin J Y, Campbell G T, Lecamwasam R, Sripathy K, Hope J, Buchler B, Lam P K 2020 Sci. Adv. 6 eaax8256Google Scholar

    [11]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H 2010 Nano Lett. 10 1103Google Scholar

    [12]

    Waks E, Vuckovic J 2006 Phys. Rev. Lett. 96 153601Google Scholar

    [13]

    Tassin P, Zhang L, Koschny T, Economou E N, Soukoulis C M 2009 Opt. Express 17 5595Google Scholar

    [14]

    Sun Y R, Chen H, Li X J, Hong Z 2017 Opt. Commun. 392 142Google Scholar

    [15]

    Xiao S Y, Wang T, Liu T T, Yan X C, Li Z, Xu C 2018 Carbon 126 271Google Scholar

    [16]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [17]

    Hokmabadi M P, Kim J H, Rivera E, Kung P, Kim S M 2015 Sci. Rep. 5 14373Google Scholar

    [18]

    Zheng S Q, Zhao Q X, Peng L, Jiang X 2021 Results Phys. 23 104040Google Scholar

    [19]

    Zhang J J, Xiao S S, Jeppesen C, Kristensen A, Mortensen N A 2010 Opt. Express 18 17187Google Scholar

    [20]

    Hu S, Yang H L, Han S, Huang X J, Xiao B X 2015 J. Appl. Phys. 117 043107Google Scholar

    [21]

    Tang B, Jia Z P, Huang L, Su J B, Jiang C 2021 IEEE J. Sel. Top. Quantum Electron. 27 4700406Google Scholar

    [22]

    Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J G, Zhang W L 2012 Nat. Commun. 3 1151Google Scholar

    [23]

    Sarkar R, Devi K M, Ghindani D, Prabhu S S, Chowdhury D R, Kumar G 2020 J. Opt. 22 035105Google Scholar

    [24]

    Li H M, Liu S B, Liu S Y, Wang S Y, Zhang H F, Bian B R, Kong X K 2015 Appl. Phys. Lett. 106 114101Google Scholar

    [25]

    Li H M, Liu S B, Liu S Y, Wang S Y, Ding G W, Yang H, Yu Z Y, Zhang H F 2015 Appl. Phys. Lett. 106 083511Google Scholar

    [26]

    Zhang K, Wang C, Qin L, Peng R W, Xu D H, Xiong X, Wang M 2014 Opt. Lett. 39 3539Google Scholar

    [27]

    Liu T T, Wang H X, Liu Y, Xiao L S, Zhou C B, Liu Y B, Xu C, Xiao S Y 2018 J. Phys. D:Appl. Phys. 51 415105Google Scholar

    [28]

    Devi K M, Chowdhury D R, Kumar G, Sarma A K 2018 J. Appl. Phys. 124 063106Google Scholar

    [29]

    Zhu L, Meng F Y, Fu J H, Wu Q, Hua J 2012 Opt. Express 20 4494Google Scholar

    [30]

    Hu J, Lang T T, Hong Z, Shen C Y, Shi G H 2018 J. Lightwave Technol. 36 2083Google Scholar

    [31]

    Kang M, Li Y N, Chen J, Chen J, Bai Q, Wang H T, Wu P H 2010 Appl. Phys. B 100 699Google Scholar

    [32]

    Wu X J, Quan B G, Pan X C, Xu X L, Lu X C, Gu C Z, Wang L 2013 Biosens. Bioelectron. 42 626Google Scholar

    [33]

    Zhang C, Liang L, Ding L, Jin B, Hou Y, Li C, Jiang L, Liu W, Hu W, Lu Y, Kang L, Xu W, Chen J, Wu P 2016 Appl. Phys. Lett. 108 241105Google Scholar

    [34]

    Xie Q, Dong G X, Wang B X, Huang W Q 2018 Nanoscale Res. Lett. 13 2947Google Scholar

    [35]

    Saadeldin A S, Hameed M F O, Elkaramany E M A, Obayya S S A 2019 IEEE Sens. J. 19 7993Google Scholar

    [36]

    Chen T, Zhang D P, Huang F Y, Li Z, Hu F R 2020 Mater. Res. Express 7 095802Google Scholar

    [37]

    Zhang X, Wang Y, Cui Z, Zhang X, Chen S, Zhang K, Wang X 2021 Opt. Mater. Express 11 1470Google Scholar

    [38]

    Liu T T, Zhou C B, Cheng L, Jiang X Y, Wang G Z, Xu C, Xiao S Y 2019 J. Opt. 21 035101Google Scholar

    [39]

    Zhang Z, Yang J, Han Y, He X, Zhang J, Huang J, Chen D, Xu S, Xie W 2020 Appl. Phys. A 126 199Google Scholar

    [40]

    Jiang J, Cui J, Fang R, Wu F, Yang Y 2020 Integr. Ferroelectr. 212 1Google Scholar

    [41]

    Zeng F, Zhong M 2021 Opt. Mater. 111 110596Google Scholar

  • 图 1  提出的超材料的几何结构和单元结构图

    Fig. 1.  Geometry of the proposed metamaterial structure and the unit structure diagram.

    图 2  (a) 单波段超材料、DR和DT的透射幅值曲线; (b) 双波段超材料、DR、DT和FL的透射幅值曲线

    Fig. 2.  (a) Transmission amplitude curves of the single-band metamaterial, DR and DT; (b) transmission amplitude curves of the dual-band metamaterial, DR, DT and FL.

    图 3  EIT-like的等效原子能级示意图

    Fig. 3.  Schematic diagram of EIT-like equivalent atomic energy level.

    图 4  (a) 三个波谷频率的电场分布; (b) 两个透射峰值频率的电场分布

    Fig. 4.  (a) Electric field distribution of the three trough frequencies; (b) electric field distribution of two transmission peak frequencies.

    图 5  超材料覆盖厚度为4 µm且折射率不同的被测物的仿真曲线

    Fig. 5.  Simulation curves of the metamaterial covered with the measured substances with thickness 4 µm and different refractive indices.

    图 6  (a) 超材料表面覆盖不同被测物厚度对应的第一个EIT-like窗口的拟合灵敏度; (b) 超材料表面覆盖不同被测物厚度对应的第二个EIT-like窗口的拟合灵敏度; (c) 被测物质的厚度对灵敏度的影响

    Fig. 6.  (a) Fitting sensitivity of the first EIT-like window corresponding to different measured substances thickness covered on the surface of metamaterial; (b) fitting sensitivity of the second EIT-like window corresponding to different measured substances thickness covered on the surface of metamaterial; (c) influence of thickness of the measured substances on sensitivity.

    图 7  (a) 超材料的传输曲线和相移曲线; (b) 计算的超材料的群时延和群折射率

    Fig. 7.  (a) Simulated transmission curve and phase shift curve of the metamaterial; (b) calculated group delay and group index of the metamaterial.

    表 1  超材料覆盖待测物的仿真和计算结果

    Table 1.  Simulation and calculation results of metamaterial covering the measured substances.

    The measured substanceεFrequency shift
    /GHz
    Calculated
    ε
    Calculated
    average
    ε
    FirstSecondFirstSecond
    JP-41.7133.85171.831.681.731.705
    Petroleum ether1.8152.73188.221.791.811.8
    90#2.01188.82227.672.012.012.01
    93#2.11201.44248.532.092.122.105
    Transmission oil2.2218.42265.22.22.212.205
    97#2.25222.98270.682.232.242.235
    下载: 导出CSV

    表 2  各种超材料在传感和慢光方面性能的比较

    Table 2.  Comparison of sensing and slow light properties of various metamaterials.

    Performance indexRef.[34]Ref.[35]Ref.[36]Ref.[37]Ref.[38]Ref.[39]Ref.[40]Ref.[41]This paper
    20182019202020212019202020202021
    Q5822.0530.511.8826.6319.46
    S/(GHz·RIU–1)105300280229.7452545
    FOM7.52.948.544.756.21
    $ {\tau }_{\mathrm{g}} $/ps6.7477.285.59.986.23
    下载: 导出CSV
    Baidu
  • [1]

    Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [2]

    Xiao M, Li Y Q, Jin S Z, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666Google Scholar

    [3]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594Google Scholar

    [4]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar

    [5]

    Lin X Q, Chen Z, Yu J W, Liu P Q, Li P F, Chen Z Z 2016 IEEE Sens. J. 16 293Google Scholar

    [6]

    Lin X Q, Peng J, Chen Z, Yu J W, Yang X F 2018 IEEE Sens. J. 18 9251Google Scholar

    [7]

    Li H M, Liu S B, Liu S Y, Zhang H F 2014 Appl. Phys. Lett. 105 133514Google Scholar

    [8]

    Zhang F L, He X, Zhou X, Zhou Y L, An S, Yu G Y, Pang L N 2013 Appl. Phys. Lett. 103 221904Google Scholar

    [9]

    Longdell J J, Fraval E, Sellars M J, Manson N B 2005 Phys. Rev. Lett. 95 063601Google Scholar

    [10]

    Ma J Y, Qin J Y, Campbell G T, Lecamwasam R, Sripathy K, Hope J, Buchler B, Lam P K 2020 Sci. Adv. 6 eaax8256Google Scholar

    [11]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H 2010 Nano Lett. 10 1103Google Scholar

    [12]

    Waks E, Vuckovic J 2006 Phys. Rev. Lett. 96 153601Google Scholar

    [13]

    Tassin P, Zhang L, Koschny T, Economou E N, Soukoulis C M 2009 Opt. Express 17 5595Google Scholar

    [14]

    Sun Y R, Chen H, Li X J, Hong Z 2017 Opt. Commun. 392 142Google Scholar

    [15]

    Xiao S Y, Wang T, Liu T T, Yan X C, Li Z, Xu C 2018 Carbon 126 271Google Scholar

    [16]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [17]

    Hokmabadi M P, Kim J H, Rivera E, Kung P, Kim S M 2015 Sci. Rep. 5 14373Google Scholar

    [18]

    Zheng S Q, Zhao Q X, Peng L, Jiang X 2021 Results Phys. 23 104040Google Scholar

    [19]

    Zhang J J, Xiao S S, Jeppesen C, Kristensen A, Mortensen N A 2010 Opt. Express 18 17187Google Scholar

    [20]

    Hu S, Yang H L, Han S, Huang X J, Xiao B X 2015 J. Appl. Phys. 117 043107Google Scholar

    [21]

    Tang B, Jia Z P, Huang L, Su J B, Jiang C 2021 IEEE J. Sel. Top. Quantum Electron. 27 4700406Google Scholar

    [22]

    Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J G, Zhang W L 2012 Nat. Commun. 3 1151Google Scholar

    [23]

    Sarkar R, Devi K M, Ghindani D, Prabhu S S, Chowdhury D R, Kumar G 2020 J. Opt. 22 035105Google Scholar

    [24]

    Li H M, Liu S B, Liu S Y, Wang S Y, Zhang H F, Bian B R, Kong X K 2015 Appl. Phys. Lett. 106 114101Google Scholar

    [25]

    Li H M, Liu S B, Liu S Y, Wang S Y, Ding G W, Yang H, Yu Z Y, Zhang H F 2015 Appl. Phys. Lett. 106 083511Google Scholar

    [26]

    Zhang K, Wang C, Qin L, Peng R W, Xu D H, Xiong X, Wang M 2014 Opt. Lett. 39 3539Google Scholar

    [27]

    Liu T T, Wang H X, Liu Y, Xiao L S, Zhou C B, Liu Y B, Xu C, Xiao S Y 2018 J. Phys. D:Appl. Phys. 51 415105Google Scholar

    [28]

    Devi K M, Chowdhury D R, Kumar G, Sarma A K 2018 J. Appl. Phys. 124 063106Google Scholar

    [29]

    Zhu L, Meng F Y, Fu J H, Wu Q, Hua J 2012 Opt. Express 20 4494Google Scholar

    [30]

    Hu J, Lang T T, Hong Z, Shen C Y, Shi G H 2018 J. Lightwave Technol. 36 2083Google Scholar

    [31]

    Kang M, Li Y N, Chen J, Chen J, Bai Q, Wang H T, Wu P H 2010 Appl. Phys. B 100 699Google Scholar

    [32]

    Wu X J, Quan B G, Pan X C, Xu X L, Lu X C, Gu C Z, Wang L 2013 Biosens. Bioelectron. 42 626Google Scholar

    [33]

    Zhang C, Liang L, Ding L, Jin B, Hou Y, Li C, Jiang L, Liu W, Hu W, Lu Y, Kang L, Xu W, Chen J, Wu P 2016 Appl. Phys. Lett. 108 241105Google Scholar

    [34]

    Xie Q, Dong G X, Wang B X, Huang W Q 2018 Nanoscale Res. Lett. 13 2947Google Scholar

    [35]

    Saadeldin A S, Hameed M F O, Elkaramany E M A, Obayya S S A 2019 IEEE Sens. J. 19 7993Google Scholar

    [36]

    Chen T, Zhang D P, Huang F Y, Li Z, Hu F R 2020 Mater. Res. Express 7 095802Google Scholar

    [37]

    Zhang X, Wang Y, Cui Z, Zhang X, Chen S, Zhang K, Wang X 2021 Opt. Mater. Express 11 1470Google Scholar

    [38]

    Liu T T, Zhou C B, Cheng L, Jiang X Y, Wang G Z, Xu C, Xiao S Y 2019 J. Opt. 21 035101Google Scholar

    [39]

    Zhang Z, Yang J, Han Y, He X, Zhang J, Huang J, Chen D, Xu S, Xie W 2020 Appl. Phys. A 126 199Google Scholar

    [40]

    Jiang J, Cui J, Fang R, Wu F, Yang Y 2020 Integr. Ferroelectr. 212 1Google Scholar

    [41]

    Zeng F, Zhong M 2021 Opt. Mater. 111 110596Google Scholar

  • [1] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用.  , 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [2] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性.  , 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料.  , 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [4] 向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 利用样品阱实现太赫兹超材料的超微量传感.  , 2023, 72(12): 128701. doi: 10.7498/aps.72.20230080
    [5] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器.  , 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [6] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真.  , 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [7] 陈永强, 许光远, 王军, 方宇, 吴幸智, 丁亚琼, 孙勇. 基于非对称微波光子晶体的电磁二极管.  , 2022, 71(3): 034701. doi: 10.7498/aps.71.20211291
    [8] 宁仁霞, 黄旺, 王菲, 孙剑, 焦铮. 双明模耦合的双波段类电磁诱导透明研究.  , 2022, 71(1): 014201. doi: 10.7498/aps.71.20211312
    [9] 张跃斌, 马成举, 张垚, 金嘉升, 鲍士仟, 李咪, 李东明. 基于非对称结构全介质超材料的类电磁诱导透明效应研究.  , 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [10] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性.  , 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [11] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性.  , 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [12] 陈永强, 许光远, 王军, 方宇, 吴幸智, 丁亚琼, 孙勇. 基于非对称微波光子晶体的电磁二极管.  , 2021, (): . doi: 10.7498/aps.70.20211291
    [13] 宁仁霞, 黄旺, 王菲, 孙剑, 焦铮. 双明模耦合的双波段类电磁诱导透明研究.  , 2021, (): . doi: 10.7498/aps.70.20211312
    [14] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计.  , 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [15] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性.  , 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [16] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究.  , 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [17] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取.  , 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [18] 刘志强, 常胜江, 王晓雷, 范飞, 李伟. 基于VO2薄膜相变原理的温控太赫兹超材料调制器.  , 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [19] 蔡元学, 掌蕴东, 党博石, 吴昊, 王金芳, 袁萍. 基于Ⅲ-Ⅴ与Ⅱ-Ⅵ族半导体材料色散特性的高灵敏度慢光干涉仪.  , 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [20] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究.  , 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
计量
  • 文章访问数:  5047
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 修回日期:  2022-03-06
  • 上网日期:  2022-06-20
  • 刊出日期:  2022-07-05

/

返回文章
返回
Baidu
map