Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-dimensional simulation of laser-induced Mach cones in complex plasmas under microgravity conditions

Huang Yu-Feng Jia Wen-Zhu Zhang Ying-Ying Song Yuan-Hong

Citation:

Three-dimensional simulation of laser-induced Mach cones in complex plasmas under microgravity conditions

Huang Yu-Feng, Jia Wen-Zhu, Zhang Ying-Ying, Song Yuan-Hong
PDF
HTML
Get Citation
  • The three-dimensional density distribution of dust particles in complex plasma under microgravity condition has received much attention. Based on the three-dimensional hydrodynamic simulation, the influences of different coupling parameters, shielding parameters, charge of dust particles and plasma density on the Mach cone by laser-induced are studied in complex plasma under microgravity conditions. When the shielding parameters are large, it is found that three different formulas of coupling parameters $ \varGamma = \dfrac{{Z_{\text{d}}^{2}{e^2}}}{{d \cdot {T_{\text{d}}}}} $, $ \varGamma ' = \dfrac{{Z_{\text{d}}^{2}{e^2}}}{{d \cdot {T_{\text{d}}}}}\exp ( - \kappa ) $ and $ \varGamma ' = \dfrac{{Z_{\text{d}}^{2}{e^2}}}{{d \cdot {T_{\text{d}}}}}(1{+}\kappa {+}\dfrac{{{\kappa ^2}}}{2})\exp ( - \kappa ) $ have a great influence on the disturbance density of dust particles, and the simulation results are in better agreement with the theoretical expectations under the third formulas. In addition, when the laser radiation force is parallel or vertical to the laser movement speed, the Mach cone structure is symmetrical or antisymmetric in the three-dimensional space, which is mainly based on the asymmetry of the laser disturbance mode. Besides, increasing the shielding parameters, or reducing the charge of dust particles, or reducing the plasma density, the shielding interaction between the dust particles is enhanced, making the Mach cone formed by the dust disturbance density more localized around the laser spot, which is characterized by narrowing the disturbance range and increasing density value. It is expected that this work can provide some reference for the theoretical and experimental studies of laser-induced Mach cone in three-dimensional complex plasma under microgravity conditions.
      Corresponding author: Zhang Ying-Ying, yyzhang1231@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275039, 12020101005, 11975067) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. DUT23BK016).
    [1]

    Selwyn G S, Singh J, Bennett R S 1989 J. Vac. Sci. Technol. , A 7 2758Google Scholar

    [2]

    Fortov V E, Khrapak A G, Khrapak S A, Molotkov V I, Petrov O F 2004 Phys. Usp. 47 447Google Scholar

    [3]

    Merlino R L, Goree J A 2004 Phys. Today 57 32Google Scholar

    [4]

    Markus H T, Hubertus M T, Christina A K, Andre M, Uwe K 2023 npj Microgravity 9 13Google Scholar

    [5]

    Zaehringer E, Schwabe M, Zhdanov S, Mohr D P, Knapek C A, Huber P, Semenov I L, Thomas H M 2018 Phys. Plasmas 25 033703Google Scholar

    [6]

    Samsonov D, Goree J, Ma Z W, Bhattacharjee A, Thomas H M, Morfill G E 1999 Phys. Rev. Lett. 83 3649Google Scholar

    [7]

    Ma Z W, Bhattacharjee A 2002 Phys. Plasmas 9 3349Google Scholar

    [8]

    Melzer A, Nunomura S, Samsonov D, Ma Z W, Goree J 2000 Phys. Rev. E 62 4162Google Scholar

    [9]

    Sato N, Uchida G, Kaneko T, Shimizu S, Iizuka S 2001 Phys. Plasmas 8 1786Google Scholar

    [10]

    Cheung F, Samarian A, James B 2003 New J. Phys. 5 75Google Scholar

    [11]

    Schwabe M, Jiang K, Zhdanov S, Hagl T, Huber P, Ivlev A V, Lipaev A M, Molotkov V I, Naumkin V N, Sutterlin K R, Thomas H M, Fortov V E, Morfill G E, Skvortsov A, Volkov S 2011 EPL 96 55001Google Scholar

    [12]

    Nosenko V, Goree J, Ma Z W, Piel A 2002 Phys. Rev. Lett. 88 135001Google Scholar

    [13]

    Nosenko V, Goree J, Ma Z W, Dubin D H E, Piel A 2003 Phys. Rev. E 68 056409Google Scholar

    [14]

    Hou L J, Wang Y N, Mišković Z L 2004 Phys. Rev. E 70 056406Google Scholar

    [15]

    段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红 2023 72 165202Google Scholar

    Duan M Y, Jia W Z, Zhang Y Y, Zhang Y F, Song Y H 2023 Acta Phys. Sin. 72 165202Google Scholar

    [16]

    Jia W Z, Zhang Q Z, Wang X F, Song Y H, Zhang Y Y, Wang Y N 2019 J. Phys. D: Appl. Phys. 52 015206Google Scholar

    [17]

    Jiang K, Hou L J, Wang Y N 2005 Chin. Phys. Lett. 22 1713Google Scholar

    [18]

    Hou L J, Mišković Z L, Jiang K, Wang Y N 2006 Phys. Rev. Lett. 96 255005Google Scholar

    [19]

    Jiang K, Hou L J, Wang Y N, Mišković Z L 2006 Phys. Rev. E. 73 016404Google Scholar

    [20]

    Slattery W L, Doolen G D, DeWitt H E 1980 Phys. Rev. A 21 2087Google Scholar

    [21]

    Ichimaru S 1982 Rev. Mod. Phys. 54 1017Google Scholar

    [22]

    Hartmann P, Kalman G J, Donkó Z, Kutasi K 2005 Phys. Rev. E 72 026409Google Scholar

    [23]

    Vaulina O S, Khrapak S A, Morfill G 2002 Phys. Rev. E 66 016404Google Scholar

    [24]

    Wani R, Mir A, Batool F, Tiwari S 2022 Sci. Rep. 12 11557Google Scholar

    [25]

    Kaw P K, Sen A 1998 Phys. Plasmas 5 3552Google Scholar

    [26]

    Kalman G J, Rosenberg M, DeWitt H E 2000 Phys. Rev. Lett. 84 6030Google Scholar

    [27]

    Ikezi H 1986 Phys. Fluids 29 1764Google Scholar

    [28]

    Dasgupta C, Maitra S 2021 Phys. Plasmas 28 043703Google Scholar

    [29]

    Bandyopadhyay P, Dey R, Kadyan S, Sen A 2014 Phys. Plasmas 21 103707Google Scholar

    [30]

    Nunomura S, Zhdanov S, Samsonov D, Morfill G 2005 Phys. Rev. Lett. 94 045001Google Scholar

    [31]

    Vaulina O S, Vladimirov S V 2002 Phys. Plasmas 9 835Google Scholar

    [32]

    Fortov V E, Vaulina O S, Petrov O F, Molotkov V I, Lipaev A M, Torchinsky V M, Thomas H M, Morfill G E, Khrapak S A, Semenov Yu P, Ivanov A I, Krikalev S K, Kalery A Yu, Zaletin S V, Gidzenko Yu P 2003 Phys. Rev. Lett. 90 245005Google Scholar

    [33]

    Caliebe D, Arp O, Piel A 2011 Phys. Plasmas 18 073702Google Scholar

    [34]

    Vaulina O S, Khrapak S A 2000 J. Exp. Theor. Phys. 90 287Google Scholar

    [35]

    Hamaguchi S, Farouki R T, Dubin D H E 1997 Phys. Rev. E 56 4671Google Scholar

    [36]

    Epstein P S 1924 Phys. Rev. 23 710Google Scholar

    [37]

    Slattery W L, Doolen G D, DeWitt H E 1982 Phys. Rev. A 26 2255Google Scholar

    [38]

    Dubin D 2000 Phys. Plasmas 7 3895Google Scholar

  • 图 1  假设$ {{\boldsymbol{F}}}_{{\mathrm{L}}}/ /{{\boldsymbol{v}}}_{{\mathrm{L}}} $时, ${Z_{\text{d}}} = 4000 e$, ${n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$, 屏蔽参数分别为(a) $\kappa = 2$, (b) $\kappa = 1$和(c) $\kappa = 0.5$, 耦合参数形式分别为${f_1}(\kappa )$, ${f_2}(\kappa )$, ${f_3}(\kappa )$, 尘埃粒子扰动密度${{{n_{{\text{d}}1}}} \mathord{\left/ {\vphantom {{{n_{{\text{d}}1}}} {{n_{{\text{d0}}}}}}} \right. } {{n_{{\text{d0}}}}}}$(用${n_{{\text{d0}}}}$无量纲)随着z轴的变化情况, 其中$ x = 0 $, $ y = 0 $

    Figure 1.  The laser-induced perturbed density ${{{n_{{\text{d}}1}}} \mathord{\left/ {\vphantom {{{n_{{\text{d}}1}}} {{n_{{\text{d}}0}}}}} \right. } {{n_{{\text{d}}0}}}}$dependent on the axial position z, for different screening parameters: (a) $\kappa = 2$; (b) $\kappa = 1$; and (c) $\kappa = 0.5$, and different coupling parameters:${f_1}(\kappa )$, ${f_2}(\kappa )$, and ${f_3}(\kappa )$, with ${Z_{\text{d}}} = 4000 e, {\text{ }}{n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$, and $ {{\boldsymbol{F}}}_{{\mathrm{L}}}/ / {{\boldsymbol{v}}}_{{\mathrm{L}}} $.

    图 2  假设$ {{\boldsymbol{F}}}_{{\mathrm{L}}}/ / {{\boldsymbol{v}}}_{{\mathrm{L}}} $时, ${Z_{\text{d}}} = 4000 e$, ${n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$, 三种形式${f_1}(\kappa )$, ${f_2}(\kappa )$, ${f_3}(\kappa )$条件下, 耦合参数${\varGamma ^ * }$随着屏蔽参数$\kappa $的变化曲线

    Figure 2.  The coupling parameter ${\varGamma ^ * }$ change versus the screening parameter $\kappa $for the three forms ${f_1}(\kappa )$, ${f_2}(\kappa )$, ${f_3}(\kappa )$, with ${Z_{\text{d}}} = 4000 e, {\text{ }}{n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$, and $ {{\boldsymbol{F}}}_{\text{L}}/ / {{\boldsymbol{v}}}_{\text{L}} $.

    图 3  假设$ {{\boldsymbol{F}}}_{\text{L}}/ /{{\boldsymbol{v}}}_{\text{L}} $时, 在${Z_{\text{d}}} = 4000 e$, ${n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$条件下, 尘埃粒子扰动密度${{{n_{{\text{d}}1}}} \mathord{\left/ {\vphantom {{{n_{{\text{d}}1}}} {{n_{{\text{d}}0}}}}} \right. } {{n_{{\text{d}}0}}}}$(用${n_{{\text{d0}}}}$无量纲) (a), (c), (e) x-z平面(y = 0) 形成的马赫锥; (b), (d), (f) x-y截面(z = –30)形成的三维对称结构. 其中屏蔽参数分别为(a), (b) $\kappa = 2$, (c), (d) $\kappa = 1$和(e), (f) $\kappa = 0.5$

    Figure 3.  Mach cones by the laser-induced perturbed density ${{{n_{{\text{d}}1}}} \mathord{\left/ {\vphantom {{{n_{{\text{d}}1}}} {{n_{{\text{d}}0}}}}} \right. } {{n_{{\text{d}}0}}}}$in the (a), (c) (e) x-z plane (y = 0) and (b), (d), (f) plane x-y (z = –30), for different screening parameters (a), (b) $\kappa = 2$, (c), (d) $\kappa = 1$, and (e), (f) $\kappa = 0.5$, with ${Z_{\text{d}}} = 4000 e, {\text{ }}{n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{{{ - 3}}}}$, and $ {{\boldsymbol{F}}}_{\text{L}}/ / {{\boldsymbol{v}}}_{\text{L}} $.

    图 4  当${{\boldsymbol{F}}_{\mathrm{L}}} \bot {{\boldsymbol{v}}_{\text{L}}}$时, 在${Z_{\text{d}}} = 4000 e$, ${n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$条件下, 尘埃粒子扰动密度${{{n_{{\text{d}}1}}} \mathord{\left/ {\vphantom {{{n_{{\text{d}}1}}} {{n_{{\text{d0}}}}}}} \right. } {{n_{{\text{d0}}}}}}$(用${n_{{\text{d}}0}}$无量纲)在(a), (c), (e) x-z平面(y = 0) 形成的马赫锥, 以及在(b), (d), (f) x-y截面(z = –30)形成的三维结构, 屏蔽参数分别为 (a), (b) $\kappa = 2$, (c), (d) $\kappa = 1$和 (e), (f) $\kappa = 0.5$

    Figure 4.  Mach cones by the laser-induced perturbed density ${{{n_{{\text{d}}1}}} \mathord{\left/ {\vphantom {{{n_{{\text{d}}1}}} {{n_{{\text{d0}}}}}}} \right. } {{n_{{\text{d0}}}}}}$ in the (a), (c), (e) x-z plane (y = 0) and (b), (d), (f) plane x-y (z = –30), for different screening parameters (a), (b) $\kappa = 2$, (c), (d) $\kappa = 1$, and (e), (f) $\kappa = 0.5$, with ${Z_{\text{d}}} = 4000 e, $$ {\text{ }}{n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$, and ${{\boldsymbol{F}}_{\text{L}}} \bot {{\boldsymbol{v}}_{\text{L}}}$

    图 5  当$ {{\boldsymbol{F}}}_{\text{L}}/ / {{\boldsymbol{v}}}_{{\mathrm{L}}} $时, 在$\kappa = 1, {\text{ }}{n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$条件下, 激光诱导尘埃粒子扰动密度${{{n_{{\text{d}}1}}} \mathord{\left/ {\vphantom {{{n_{{\text{d}}1}}} {{n_{{\text{d}}0}}}}} \right. } {{n_{{\text{d}}0}}}}$(用${n_{{\text{d}}0}}$无量纲)在x-z平面($ y = 0 $)上形成的马赫锥, 尘埃表面电荷量分别为 (a) ${Z_{\text{d}}} = 1000 e$; (b) ${Z_{\text{d}}} = 2000 e$; (c) ${Z_{\text{d}}} = 4000 e$; (d) ${Z_{\text{d}}} = 6000 e$

    Figure 5.  Mach cones by the laser-induced perturbed density ${{{n_{{\text{d}}1}}} \mathord{\left/ {\vphantom {{{n_{{\text{d}}1}}} {{n_{{\text{d}}0}}}}} \right. } {{n_{{\text{d}}0}}}}$in the x-z plane ($ y = 0 $), for different charge on each dust particle: (a) ${Z_{\text{d}}} = 1000 e$; (b) $ {Z_{\text{d}}} = 2000 e $; (c) ${Z_{\text{d}}} = 4000 e$; (d) ${Z_{\text{d}}} = 6000 e$, with $\kappa = 1, {\text{ }}{n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$, and $ {{\boldsymbol{F}}}_{\text{L}}/ / {{\boldsymbol{v}}}_{\text{L}} $.

    图 6  当$ {{\boldsymbol{F}}}_{{\mathrm{L}}}/ / {{\boldsymbol{v}}}_{{\mathrm{L}}} $时, 在$\kappa = 2, {\text{ }}{Z_{\text{d}}} = 4000 e$条件下, 激光诱导尘埃粒子扰动密度${{{n_{{\text{d1}}}}} \mathord{\left/ {\vphantom {{{n_{{\text{d1}}}}} {{n_{{\text{d}}0}}}}} \right. } {{n_{{\text{d}}0}}}}$(用${n_{{\text{d0}}}}$无量纲)在x-z平面($ y = 0 $)上形成的马赫锥, 等离子体密度分别为 (a) ${n_{\text{e}}} = {10^8}\;{\text{c}}{{\text{m}}^{{{ - 3}}}}$; (b) ${n_{\text{e}}} = {10^{9}}\;{\text{c}}{{\text{m}}^{ - 3}}$; (c) ${n_{\text{e}}} = 5 \times {10^9}\;{\text{c}}{{\text{m}}^{ - 3}}$; (d) ${n_{\text{e}}} = {10^{10}}\;{\text{c}}{{\text{m}}^{ - 3}}$

    Figure 6.  Mach cones by the laser-induced perturbed density ${{{n_{{\text{d1}}}}} \mathord{\left/ {\vphantom {{{n_{{\text{d1}}}}} {{n_{{\text{d0}}}}}}} \right. } {{n_{{\text{d0}}}}}}$in the x-z plane ($ y = 0 $), for different plasma densities: (a) ${n_{\text{e}}} = {10^8}\;{\text{c}}{{\text{m}}^{ - 3}}$; (b) ${n_{\text{e}}} = {10^9}\;{\text{c}}{{\text{m}}^{ - 3}}$; (c) ${n_{\text{e}}} = 5 \times {10^9}\;{\text{c}}{{\text{m}}^{ - 3}}$; (d) ${n_{\text{e}}} = {10^{10}}\;{\text{c}}{{\text{m}}^{ - 3}}$, with $\kappa = 2, {\text{ }}{Z_{\text{d}}} = 4000 e$, and $ {{\boldsymbol{F}}}_{\text{L}}/ /{{\boldsymbol{v}}}_{\text{L}} $.

    Baidu
  • [1]

    Selwyn G S, Singh J, Bennett R S 1989 J. Vac. Sci. Technol. , A 7 2758Google Scholar

    [2]

    Fortov V E, Khrapak A G, Khrapak S A, Molotkov V I, Petrov O F 2004 Phys. Usp. 47 447Google Scholar

    [3]

    Merlino R L, Goree J A 2004 Phys. Today 57 32Google Scholar

    [4]

    Markus H T, Hubertus M T, Christina A K, Andre M, Uwe K 2023 npj Microgravity 9 13Google Scholar

    [5]

    Zaehringer E, Schwabe M, Zhdanov S, Mohr D P, Knapek C A, Huber P, Semenov I L, Thomas H M 2018 Phys. Plasmas 25 033703Google Scholar

    [6]

    Samsonov D, Goree J, Ma Z W, Bhattacharjee A, Thomas H M, Morfill G E 1999 Phys. Rev. Lett. 83 3649Google Scholar

    [7]

    Ma Z W, Bhattacharjee A 2002 Phys. Plasmas 9 3349Google Scholar

    [8]

    Melzer A, Nunomura S, Samsonov D, Ma Z W, Goree J 2000 Phys. Rev. E 62 4162Google Scholar

    [9]

    Sato N, Uchida G, Kaneko T, Shimizu S, Iizuka S 2001 Phys. Plasmas 8 1786Google Scholar

    [10]

    Cheung F, Samarian A, James B 2003 New J. Phys. 5 75Google Scholar

    [11]

    Schwabe M, Jiang K, Zhdanov S, Hagl T, Huber P, Ivlev A V, Lipaev A M, Molotkov V I, Naumkin V N, Sutterlin K R, Thomas H M, Fortov V E, Morfill G E, Skvortsov A, Volkov S 2011 EPL 96 55001Google Scholar

    [12]

    Nosenko V, Goree J, Ma Z W, Piel A 2002 Phys. Rev. Lett. 88 135001Google Scholar

    [13]

    Nosenko V, Goree J, Ma Z W, Dubin D H E, Piel A 2003 Phys. Rev. E 68 056409Google Scholar

    [14]

    Hou L J, Wang Y N, Mišković Z L 2004 Phys. Rev. E 70 056406Google Scholar

    [15]

    段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红 2023 72 165202Google Scholar

    Duan M Y, Jia W Z, Zhang Y Y, Zhang Y F, Song Y H 2023 Acta Phys. Sin. 72 165202Google Scholar

    [16]

    Jia W Z, Zhang Q Z, Wang X F, Song Y H, Zhang Y Y, Wang Y N 2019 J. Phys. D: Appl. Phys. 52 015206Google Scholar

    [17]

    Jiang K, Hou L J, Wang Y N 2005 Chin. Phys. Lett. 22 1713Google Scholar

    [18]

    Hou L J, Mišković Z L, Jiang K, Wang Y N 2006 Phys. Rev. Lett. 96 255005Google Scholar

    [19]

    Jiang K, Hou L J, Wang Y N, Mišković Z L 2006 Phys. Rev. E. 73 016404Google Scholar

    [20]

    Slattery W L, Doolen G D, DeWitt H E 1980 Phys. Rev. A 21 2087Google Scholar

    [21]

    Ichimaru S 1982 Rev. Mod. Phys. 54 1017Google Scholar

    [22]

    Hartmann P, Kalman G J, Donkó Z, Kutasi K 2005 Phys. Rev. E 72 026409Google Scholar

    [23]

    Vaulina O S, Khrapak S A, Morfill G 2002 Phys. Rev. E 66 016404Google Scholar

    [24]

    Wani R, Mir A, Batool F, Tiwari S 2022 Sci. Rep. 12 11557Google Scholar

    [25]

    Kaw P K, Sen A 1998 Phys. Plasmas 5 3552Google Scholar

    [26]

    Kalman G J, Rosenberg M, DeWitt H E 2000 Phys. Rev. Lett. 84 6030Google Scholar

    [27]

    Ikezi H 1986 Phys. Fluids 29 1764Google Scholar

    [28]

    Dasgupta C, Maitra S 2021 Phys. Plasmas 28 043703Google Scholar

    [29]

    Bandyopadhyay P, Dey R, Kadyan S, Sen A 2014 Phys. Plasmas 21 103707Google Scholar

    [30]

    Nunomura S, Zhdanov S, Samsonov D, Morfill G 2005 Phys. Rev. Lett. 94 045001Google Scholar

    [31]

    Vaulina O S, Vladimirov S V 2002 Phys. Plasmas 9 835Google Scholar

    [32]

    Fortov V E, Vaulina O S, Petrov O F, Molotkov V I, Lipaev A M, Torchinsky V M, Thomas H M, Morfill G E, Khrapak S A, Semenov Yu P, Ivanov A I, Krikalev S K, Kalery A Yu, Zaletin S V, Gidzenko Yu P 2003 Phys. Rev. Lett. 90 245005Google Scholar

    [33]

    Caliebe D, Arp O, Piel A 2011 Phys. Plasmas 18 073702Google Scholar

    [34]

    Vaulina O S, Khrapak S A 2000 J. Exp. Theor. Phys. 90 287Google Scholar

    [35]

    Hamaguchi S, Farouki R T, Dubin D H E 1997 Phys. Rev. E 56 4671Google Scholar

    [36]

    Epstein P S 1924 Phys. Rev. 23 710Google Scholar

    [37]

    Slattery W L, Doolen G D, DeWitt H E 1982 Phys. Rev. A 26 2255Google Scholar

    [38]

    Dubin D 2000 Phys. Plasmas 7 3895Google Scholar

  • [1] Tian Miao, Yao Ting-Yu, Cai Zhi-Min, Liu Fu-Cheng, He Ya-Feng. Three-dimensional numerical simulation of particle separation using a dusty plasma ratchet. Acta Physica Sinica, 2024, 73(11): 115201. doi: 10.7498/aps.73.20240319
    [2] Xu Zi-Yuan, Zhou Hui, Liu Guang-Han, Gao Zhong-Liang, Ding Li, Lei Fan. Effect of three-dimensional traveling wave magnetic field on plasma sheath density. Acta Physica Sinica, 2024, 73(17): 175201. doi: 10.7498/aps.73.20240877
    [3] Zhao Ming-Liang, Xing Si-Yu, Tang Wen, Zhang Yu-Ru, Gao Fei, Wang You-Nian. Three-dimensional fluid simulation of a planar coil inductively coupled argon plasma source for semiconductor processes. Acta Physica Sinica, 2024, 73(21): 215201. doi: 10.7498/aps.73.20240952
    [4] Duan Meng-Yue, Jia Wen-Zhu, Zhang Ying-Ying, Zhang Yi-Fan, Song Yuan-Hong. Two-dimensional fluid simulation of spatial distribution of dust particles in a capacitively coupled silane plasma. Acta Physica Sinica, 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [5] Gu Xin, Zhang Hui-Fang, Li Ming-Yu, Chen Jun-Ya, He Ying. Theoretical analysis of tunable double plasmon induced transparency in three-ellipse-shaped resonator coupled waveguide. Acta Physica Sinica, 2022, 71(24): 247301. doi: 10.7498/aps.71.20221365
    [6] Zhu Zi-Hao, Gao You-Kang, Zeng Yan, Cheng Zheng, Ma Hong-Hua, Yi Xu-Nong. Three-band plasmon induced transparency effect based on four-disk resonator coupled waveguide system. Acta Physica Sinica, 2022, 71(24): 244201. doi: 10.7498/aps.71.20221397
    [7] Wang Li, Wen De-Qi, Tian Chong-Biao, Song Yuan-Hong, Wang You-Nian. Electron heating dynamics and plasma parameters control in capacitively coupled plasma. Acta Physica Sinica, 2021, 70(9): 095214. doi: 10.7498/aps.70.20210473
    [8] Zhang Gai-Ling, Hua Yue, Hao Ze-Yu, Ren Chun-Sheng. Experimental investigation of plasma parameters in 13.56 MHz/2 MHz cylindrical inductively coupled plasma. Acta Physica Sinica, 2019, 68(10): 105202. doi: 10.7498/aps.68.20190071
    [9] Che Bi-Xuan, Li Xiao-Kang, Cheng Mou-Sen, Guo Da-Wei, Yang Xiong. A magnetohydrodynamic numerical model with external circuit coupled for pulsed inductive thrusters. Acta Physica Sinica, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [10] Li Hang,  Yang Dong,  Li San-Wei,  Kuang Long-Yu,  Li Li-Ling,  Yuan Zheng,  Zhang Hai-Ying,  Yu Rui-Zhen,  Yang Zhi-Wen,  Chen Tao,  Cao Zhu-Rong,  Pu Yu-Dong,  Miao Wen-Yong,  Wang Feng,  Yang Jia-Min,  Jiang Shao-En,  Ding Yong-Kun,  Hu Guang-Yue,  Zheng Jian. Observation of hydrodynamic phenomena of plasma interaction in hohlraums. Acta Physica Sinica, 2018, 67(23): 235201. doi: 10.7498/aps.67.20181391
    [11] Yuan Xiao-Xia, Zhong Jia-Yong. Simulations for two colliding plasma bubbles embedded into an external magnetic field. Acta Physica Sinica, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [12] Wei Xiao-Long, Xu Hao-Jun, Li Jian-Hai, Lin Min, Song Hui-Min. Experimental investigation and parameter diagnosis of air high-pressure ring-shaped inductively coupled plasma. Acta Physica Sinica, 2015, 64(17): 175201. doi: 10.7498/aps.64.175201
    [13] He Fu-Shun, Li Liu-He, Li Fen, Dun Dan-Dan, Tao Chan-Cai. Numerical simulation of enhanced glow discharge plasma immersion ion implantation using three-dimensional PIC/MC model. Acta Physica Sinica, 2012, 61(22): 225203. doi: 10.7498/aps.61.225203
    [14] Wang Wei-Zong, Wu Yi, Rong Ming-Zhe, Yang Fei. Theoretical computation studies for transport properties of air plasmas. Acta Physica Sinica, 2012, 61(10): 105201. doi: 10.7498/aps.61.105201
    [15] Meng Li-Min, Teng Ai-Ping, Li Ying-Jun, Cheng Tao, Zhang Jie. Two-dimensional plasma hydrodynamic of X-ray laser based on self-similarity model. Acta Physica Sinica, 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [16] Ma Xiao-Tao, Zheng Wan-Hua, Ren Gang, Fan Zhong-Chao, Chen Liang-Hui. Inductively coupled plasma etching of two-dimensional InP/InGaAsP-based photonic crystal. Acta Physica Sinica, 2007, 56(2): 977-981. doi: 10.7498/aps.56.977
    [17] Xu Li-Jun, Liu Shao-Bin, Mo Jin-Jun, Yuan Nai-Chang. FDTD analysis of 3-D conducting target coated by anisotropic magnetized plasma. Acta Physica Sinica, 2006, 55(7): 3470-3474. doi: 10.7498/aps.55.3470
    [18] Xin Yu, Di Xiao-Lian, Yu Yi-Qing, Ning Zhao-Yuan. Generation of multi-source inductively coupled plasma and its diagnostics. Acta Physica Sinica, 2006, 55(7): 3494-3500. doi: 10.7498/aps.55.3494
    [19] Cang Yu, Lu Xin, Wu Hui-Chun, Zhang Jie. Effects of ponderomotive forces and space-charge field on laser plasma hydrodynamics. Acta Physica Sinica, 2005, 54(2): 812-817. doi: 10.7498/aps.54.812
    [20] YANG WEI-HONG, HU XI-WEI. MAGNETOHYDRODYNAMICS WAVES IN A NONHOMEG-ENEOUS CURRENT-CARRYING CYLINDRICAL PLASMA. Acta Physica Sinica, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
Metrics
  • Abstract views:  1816
  • PDF Downloads:  79
  • Cited By: 0
Publishing process
  • Received Date:  24 November 2023
  • Accepted Date:  29 December 2023
  • Available Online:  30 January 2024
  • Published Online:  20 April 2024

/

返回文章
返回
Baidu
map