-
等离子体的电子密度分布, 电子碰撞频率分布, 覆盖面积, 厚度是影响其覆盖目标电磁散射特征的关键属性. 对此, 本文开展了在20 cm×20 cm×7 cm石英腔内感性耦合等离子体(ICP)的放电实验, 观察了在高气压条件下, 空气ICP的环形放电形态, E-H模式跳变现象和分层结构, 测量了其电负性核心区和电正性边缘区宽度和厚度随功率、气压的变化趋势, 并通过COMSOL Multiphysics对平板线圈磁场强度分布的分析和电负性气体扩散理论给予上述现象合理的解释, 同时, 利用微波透射干涉法测量了核心区域的电子密度随功率和气压的变化曲线, 利用理论模型计算了边缘区域的电子密度分布, 最后通过辅助气体Ar发射谱线的玻尔兹曼图形法得到了核心区和边缘区的电子激发温度.The variable parameters like electron destiny (ne), electron collision frequency, covered-area and thickness have been regarded as the key factors for the electromagnetic scattering characteristics of the covering target. Therefore, an air inductively coupled plasma (ICP) generator of all-quartz chamber of 20 cm × 20 cm × 7 cm without magnetic confinement and grounded metal surface of substantial area is designed and conducted to study the discharge process and diagnose the parameters in this paper. The shape, E-H mode transition, and structure of inductively coupled plasma are observed, and the width and thickness change due to change of power and pressure are measured in experiments. Results show that the plasma is nearly uniformly full of the chamber in E-mode, while the shape of plasma rapidly changes to a ring in H-mode and the structure of inductively coupled plasma stratified into an electronegative core and an electropositive halo. It is observed clearly that the luminance of plasma increases slowly with the RF power in E-mode, but increases significantly in H-mode, which are proved through the relative spectral intensity variation of nitrogen 337.1 nm spectral lines due to the change of power and pressure. The width and thickness of the core region increase significantly with power, while decrease apparently with increasing pressure, which could be logically explained by the variation of RF magnetic induction amplitude distribution with power and by the theoretical diffusion analyses of electronegative gas. Since a mass of oxygen electronegative ion exists in the air inductively coupled plasma, the electron density (ne) diffusion models are different for the electronegative core and the electropositive halo. It is proved also by the theoretical drift-diffusion analyses that the electron density is distributed nearly uniformly in the electronegative core and decreased sharply in the electropositive halo. The model of electromagnetic wave propagation in the ICP generator is given and the microwave interferometry is discussed in detail. The electron density in the core region under different discharge conditions is diagnosed by microwave interferometer and the electron density of edge halo is calculated by using the high-pressure diffusion model. And the electron density increases with increasing power and pressure, which range from 0.65×1011 to 3.71×1011 cm-3. But decay rate of electron density in the halo is less affected by the power at 100 Pa, while the rate is accelerated with increasing pressure. Finally, the electronic excitation temperature of the electronegative core and the electropositive halo are diagnosed by Boltzmann graphic method using emissive spectrum of auxiliary Ar. Results show that the electronic excitation temperature of the core, which ranges from 4201 to 4390 K, increases with increasing power, but decreases with increasing pressure.
-
Keywords:
- ICP /
- all-quartz chamber /
- electron destiny /
- electronic excitation temperature
[1] Yang M, Li X P, Xie K, Liu Y M, Liu D L 2013 Physics of Plasmas 20 012101
[2] Anurag Mishra A, Geun Young Yeom. 2013 Surface & Coatings Technology 237 2549
[3] Lin M, Xu H J, Su C, Liang H, Wei X L 2014 Spectroscopy and Spectral Analysis. 34 1594 (in Chinese) [林敏, 徐浩军, 苏晨, 梁华, 魏小龙 2014 光谱学与光谱分析 34 1594]
[4] Lee M H, Chung C W 2006 Physics of Plasmas. 13 063510
[5] Di X L, Xin Y, Ning Z Y 2006 Acta Phys. Sin. 55 5311 (in Chinese) [狄小莲, 辛煜, 宁兆元 2006 55 5311]
[6] Du Y C, Cao J X, Wang J, Zheng Z, Liu Y, Meng G, Ren A M, Zhang S J 2012 Acta Phys. Sin. 61 195206 (in Chinese) [杜寅昌, 曹金祥, 汪建, 郑哲, 刘宇, 孟刚, 任爱民, 张生俊 2012 61 195206]
[7] Berndt J, Kovačević E, Selenin1 V, Stefanović2 I, Winter J 2006 Plasma Sources Sci. Technol. 15 18
[8] Andrasch M, Ehlbeck J, Foest R, Weltmann K D 2012 Plasma Sources Sci. Technol. 21 055032
[9] Zhao W H, Li J Q, Yang J D 1997 IEEE Transactions on Plasma Science 25 828
[10] Khan A W, Janc F, Saeed A, Zaka-ul-Islam M, Abrar M, Khattak N A D, Zakaullah M 2013 Current Applied Physics 13 1241
[11] Hopwood J, Guarnieri C R, Whitehair S J, Cuomo J J 1993 Journal of Vacuum Science & Technology A 11 152
[12] Vender D, Stoffels W W, Stoffels E, Kroesen G M W, de Hoog F F 1995 Phys. Rev. E 51 2436
[13] Thomson B J 1959 Proc. Phys. Soc. 73 818
[14] Huang M, Lehn S A, Andrews E J, Hieftje G M 1997 Spectrochimica Acta Part B 52 1173
[15] Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Hoboken, New Jersey) p340-360
[16] Lee Y W, Lee H L, Chung T H 2011 Journal of Applied Physics 109 113302
[17] Berezjnoj S V, Shin C B, Buddemeier U, Kaganovich I 2000 Appl. Phys. Lett. 77 800
[18] Stoffels E, Stoffels W W, Vender D, Kroesen G M W, de Hoog F J 1994 IEEE Trans. Plasma Sci. 22 116
[19] Liu M H, Hu X W, Jiang Z G, Zhang S, Lan C H 2007 Journal of Applied Physics 101 053308
[20] Pereda J A, Vegas A, Prieto A 2002 IEEE Trans. Microwave Theory and Techniques 50 1689
[21] Lee H C, Lee J K, Chung C W 2010 Physics of Plasmas 17 033506
[22] Materer N, Goodman Rory S, Leone S R 1998 Journal of Applied Physics 83 1917
[23] McDaniel E W 1964 Collision Phenomena in Ionized Gases (New York: Wiley) p203
[24] Scott A Lehn, Kelly A Warner, Mao Huang, Gary M Hieftje. 1997 Spectrochimica Acta Part B 57 1739
-
[1] Yang M, Li X P, Xie K, Liu Y M, Liu D L 2013 Physics of Plasmas 20 012101
[2] Anurag Mishra A, Geun Young Yeom. 2013 Surface & Coatings Technology 237 2549
[3] Lin M, Xu H J, Su C, Liang H, Wei X L 2014 Spectroscopy and Spectral Analysis. 34 1594 (in Chinese) [林敏, 徐浩军, 苏晨, 梁华, 魏小龙 2014 光谱学与光谱分析 34 1594]
[4] Lee M H, Chung C W 2006 Physics of Plasmas. 13 063510
[5] Di X L, Xin Y, Ning Z Y 2006 Acta Phys. Sin. 55 5311 (in Chinese) [狄小莲, 辛煜, 宁兆元 2006 55 5311]
[6] Du Y C, Cao J X, Wang J, Zheng Z, Liu Y, Meng G, Ren A M, Zhang S J 2012 Acta Phys. Sin. 61 195206 (in Chinese) [杜寅昌, 曹金祥, 汪建, 郑哲, 刘宇, 孟刚, 任爱民, 张生俊 2012 61 195206]
[7] Berndt J, Kovačević E, Selenin1 V, Stefanović2 I, Winter J 2006 Plasma Sources Sci. Technol. 15 18
[8] Andrasch M, Ehlbeck J, Foest R, Weltmann K D 2012 Plasma Sources Sci. Technol. 21 055032
[9] Zhao W H, Li J Q, Yang J D 1997 IEEE Transactions on Plasma Science 25 828
[10] Khan A W, Janc F, Saeed A, Zaka-ul-Islam M, Abrar M, Khattak N A D, Zakaullah M 2013 Current Applied Physics 13 1241
[11] Hopwood J, Guarnieri C R, Whitehair S J, Cuomo J J 1993 Journal of Vacuum Science & Technology A 11 152
[12] Vender D, Stoffels W W, Stoffels E, Kroesen G M W, de Hoog F F 1995 Phys. Rev. E 51 2436
[13] Thomson B J 1959 Proc. Phys. Soc. 73 818
[14] Huang M, Lehn S A, Andrews E J, Hieftje G M 1997 Spectrochimica Acta Part B 52 1173
[15] Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Hoboken, New Jersey) p340-360
[16] Lee Y W, Lee H L, Chung T H 2011 Journal of Applied Physics 109 113302
[17] Berezjnoj S V, Shin C B, Buddemeier U, Kaganovich I 2000 Appl. Phys. Lett. 77 800
[18] Stoffels E, Stoffels W W, Vender D, Kroesen G M W, de Hoog F J 1994 IEEE Trans. Plasma Sci. 22 116
[19] Liu M H, Hu X W, Jiang Z G, Zhang S, Lan C H 2007 Journal of Applied Physics 101 053308
[20] Pereda J A, Vegas A, Prieto A 2002 IEEE Trans. Microwave Theory and Techniques 50 1689
[21] Lee H C, Lee J K, Chung C W 2010 Physics of Plasmas 17 033506
[22] Materer N, Goodman Rory S, Leone S R 1998 Journal of Applied Physics 83 1917
[23] McDaniel E W 1964 Collision Phenomena in Ionized Gases (New York: Wiley) p203
[24] Scott A Lehn, Kelly A Warner, Mao Huang, Gary M Hieftje. 1997 Spectrochimica Acta Part B 57 1739
计量
- 文章访问数: 6572
- PDF下载量: 252
- 被引次数: 0