-
容性耦合等离子体放电因在工业界有重要的应用价值而受到广泛关注. 对于容性耦合等离子体放电的研究主要集中于对等离子体参数的控制, 以实现更好的工艺效果, 例如高深宽比刻蚀等. 而关于等离子体参数的调控主要分为气体、腔室以及源这三个方面. 改变这些外部参数, 可以直接影响鞘层的动力学过程以及带电粒子的加热过程, 进而实现对电子和离子能量、通量, 等离子体均匀性, 中性基团的密度等的控制, 最终提高工艺质量和生产效率. 本文梳理了近些年容性耦合等离子体研究的几个主要方向, 尤其对等离子体放电中非常基础且重要的电子加热动力学问题进行了详尽的讨论, 并重点介绍了一些通过外部放电参数调控容性耦合等离子体放电的手段和相关的研究热点.Capacitively coupled plasma (CCP) has gain wide attention due to its important applications in industry. The researches of CCP mainly focus on the discharge characteristics and plasma parameters under different discharge conditions to obtain a good understanding of the discharge, find good methods of controlling the charged particle properties, and improve the process performance and efficiency. The controlling of plasma parameters is based on the following three aspects: gas, chamber, and power source. Changing these discharge conditions can directly influence the sheath dynamics and the charged particle heating process, which can further influence the electron and ion distribution functions, the plasma uniformity, and the production of neutral particles, etc. Based on a review of the recent years’ researches of CCP, the electron heating dynamics and several common methods of controlling the plasma parameters, i.e. voltage waveform tailoring, realistic secondary electron emission, and magnetized capacitively coupled plasma are introduced and discussed in detail in this work.
-
Keywords:
- capacitively coupled plasma /
- electron heating /
- electron dynamics /
- simulation methods and experiments
[1] Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharge for Materials Processing (New York: Wiley-Interscience) pp1−5
[2] Chabert P, Braithwaite N 2011 Physics of Radio-Frequency Plasmas (New York: Cambridge University Press)
[3] Hartmann P, Wang L, Nösges K, Berger B, Wilczek S, Brinkmann R P, Mussenbrock T, Juhasz Z, Donkó Z, Derzsi A, Lee E, Schulze J 2020 Plasma Sources Sci. Technol. 29 075014
Google Scholar
[4] Korolov I, Derzsi A, Donkó Z, Schulze J 2013 Appl. Phys. Lett. 103 064102
Google Scholar
[5] Schulze J, Schüngel E, Donkó Z, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 015017
Google Scholar
[6] Lafleur T, Booth J P 2012 J. Phys. D: Appl. Phys. 45 395203
Google Scholar
[7] Lafleur T, Delattre P A, Johnson E V, Booth J P 2012 Appl. Phys. Lett 101 124104
Google Scholar
[8] Bruneau B, Lafleur T, Booth J P, Johnson E 2016 Plasma Sources Sci. Technol. 25 025006
Google Scholar
[9] Donkó Z, Derzsi A, Vass M, Schulze J, Schuengel E, Hamaguchi S 2018 Plasma Sources Sci. Technol. 27 104008
Google Scholar
[10] Turner M M, Hutchinson D, Doyle R A, et al. 1996 Phys Rev Lett. 76 2069
Google Scholar
[11] Vasenkov A V 2004 J. Appl. Phys. 95 834
Google Scholar
[12] Zheng B, Y Fu, Wang K, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abe9f9Google Scholar
[13] Stefan R, Nikita B, Marcel R, et al. 2018 Plasma Sources Sci. Technol. 27 094001
Google Scholar
[14] Oberberg M, Berger B, Buschheuer M, Engel D, Wölfel C, Eremin D, Lunze J, Brinkmann R P, Awakowicz P, Schulze J 2020 Plasma Sources Sci. Technol. 29 075013
Google Scholar
[15] Wang L, Wen D Q, Hartmann P, Donkó Z, Derzsi A, Wang X F, Song Y H, Wang Y N, Schulze J 2020 Plasma Sources Sci. Technol. 29 105004
Google Scholar
[16] Yang S, Innocenti M E, Zhang Y, Yi L, Jiang W 2017 J. Vac. Sci. Technol., A 35 061311
Google Scholar
[17] Zhang Q Z, Wang Y N, Bogaerts A 2014 J. Appl. Phys. 115 3048
Google Scholar
[18] Wen D Q, Kawamura E, Lieberman M A, et al. 2017 J. Phys. D: Appl. Phys. 50 495201
Google Scholar
[19] Wang L, Peter H, Donko Z, Song Y H, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abf206Google Scholar
[20] Brandt S W, Berger B, Donko Z, et al. 2019 Plasma Sources Sci. Technol. 28 095021
Google Scholar
[21] Song S H, Kushner M J 2012 Plasma Sources Sci. Technol. 21 055028
Google Scholar
[22] Derzsi A, Lafleur T, Booth J P, et al. 2016 Plasma Sources Sci. Technol. 25 015004
Google Scholar
[23] Franek J, Brandt S, Berger B, Liese M, Barthel M, Schungel E, Schulze J 2015 Rev. Sci. Instrum. 86 053504
Google Scholar
[24] Schmidt F, Schulze J, Johnson E, Booth J P, Keil D, French D M, Trieschmann J, Mussenbrock T 2018 Plasma Sources Sci. Technol. 27 095012
Google Scholar
[25] Wang J K, Dine S, Booth J P, et al. 2019 J. Vac. Sci. Technol., A 37 021303
Google Scholar
[26] Cargill P J 2007 Plasma Phys. Controlled Fusion 49 197
Google Scholar
[27] Hammond E P, Mahesh K, Moin P J 2002 J. Comput. Phys. 176 402
Google Scholar
[28] Larson M G, Bengzon F 2013 The Finite Element Method: Theory, Implementation and Applications (Berlin, Heidelberg: Springer-Verlag)
[29] 陆金甫, 关治 2004 偏微分方程数值解法 (北京: 清华大学出版社) 第77−80页
Lu J P, Guan Z 2004 Numerical Methods for Partial Differential Equations (Beijing: Tsinghua University Press) pp77–80 (in Chinese)
[30] Rebiai S, Bahouh H, Sahli S 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1616
Google Scholar
[31] Liu Y X, Liang Y S, Wen D Q, Bi Z H, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025013
Google Scholar
[32] Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013
Google Scholar
[33] Czarnetzki U, Mussenbrock T, Brinkmann R P 2006 Phys. Plasmas 13 123503
Google Scholar
[34] Lieberman M A, Lichtenberg A J, Kawamura E, Mussenbrock T, Brinkmann R P 2008 Phys. Plasmas 15 063505
Google Scholar
[35] Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J, Wang Y N 2016 Plasma Sources Sci. Technol. 26 015007
Google Scholar
[36] Mussenbrock T, Brinkmann R P, Lieberman M A, Lichtenberg A J, Kawamura E 2008 Phys. Rev. Lett. 101 085004
Google Scholar
[37] Fu Y, Zheng B, Wen D Q, Zhang P, Fan Q H, Verboncoeur J P 2020 Plasma Sources Sci. Technol. 29 09lt01
Google Scholar
[38] Derzsi A, Korolov I, Schüngel E, Donkó Z, Schulze J 2015 Plasma Sources Sci. Technol. 24 034002
Google Scholar
[39] Horváth B, Daksha M, Korolov I, Derzsi A, Schulze J 2017 Plasma Sources Sci. Technol. 26 124001
Google Scholar
[40] Birdsall C K, Langdon A B 1985 Plasma Physics Via Computer Simulation (New York: McGraw-Hill)
[41] Verboncoeur J P 2005 Plasma Phys. Controlled Fusion 47 A231
Google Scholar
[42] Donkó Z, Derzsi A, Vass M, et al. 2021 arXiv:2103.09642 [physics.plasm-ph]
[43] Donkó Z 2011 Plasma Sources Sci. Technol. 20 024001
[44] Nanbu K 2000 IEEE Trans Dielectr. Electr. Insul. 28 971
Google Scholar
[45] Turner M M 1995 Phys. Rev. Lett. 75 1312
Google Scholar
[46] Schulze J, Derzsi A, Dittmann K, Hemke T, Meichsner J, Donko Z 2011 Phys. Rev. Lett. 107 275001
Google Scholar
[47] Kim H C, Lee J K 2004 Phys. Rev. Lett. 93 085003
Google Scholar
[48] Turner M M, Chabert P 2006 Phys. Rev. Lett. 96 205001
Google Scholar
[49] Liu Y X, Schungel E, Korolov I, Donko Z, Wang Y N, Schulze J 2016 Phys. Rev. Lett. 116 255002
Google Scholar
[50] Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002
Google Scholar
[51] Wilczek S, Trieschmann J, Eremin D, Brinkmann R P, Schulze J, Schuengel E, Derzsi A, Korolov I, Hartmann P, Donkó Z, Mussenbrock T 2016 Phys. Plasmas 23 063514
Google Scholar
[52] Jiang W, Wang H Y, Bi Z H, Wang Y N 2011 Plasma Sources Sci. Technol. 20 035013
Google Scholar
[53] Zhang Q Z, Zhao S X, Jiang W, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 305203
Google Scholar
[54] Eremin D, Bienholz S, Szeremley D, Trieschmann J, Ries S, Awakowicz P, Mussenbrock T, Brinkmann R P 2016 Plasma Sources Sci. Technol. 25 025020
Google Scholar
[55] Eremin D 2017 IEEE Trans. Plasma Sci. 45 527
Google Scholar
[56] Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J, Wang Y N 2017 Phys. Plasmas 24 083517
Google Scholar
[57] Eremin D, Brinkmann R P, Mussenbrock T 2017 Plasma Processes Polym. 14 1600164
Google Scholar
[58] Wen D Q, Zhang Q Z, Jiang W, et al. 2014 J. Appl. Phys. 115 233303
Google Scholar
[59] Wang L, Hartmann P, Donkó Z, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abf31dGoogle Scholar
[60] Gudmundsson J T, Kawamura E, Lieberman M A 2013 Plasma Sources Sci. Technol. 22 035011
Google Scholar
[61] Verboncoeur J P, Langdon A B, Gladd N T 1995 Comput. Phys. Commun. 87 199
Google Scholar
[62] 夏伯特P, 布雷斯韦特N 著(王友年, 徐军, 宋远红 译) 2015 射频离子体物理学 (北京: 科学出版社)
Chabert P, Braithwaite N (translated by Wang Y N, Xu J, Song Y H) 2015 Physics of Radio-Frequency Plasmas (Beijing: Science Press) (in Chinese)
[63] Liu J, Wen D Q, Liu Y X, Gao F, Lu W Q, Wang Y N 2013 J. Vac. Sci. Technol., A 31 061308
Google Scholar
[64] Zhu X M, Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001
Google Scholar
[65] Li J, Liu F X, Zhu X M, Pu Y K 2011 J. Phys. D: Appl. Phys. 44 292001
Google Scholar
[66] Xue C, Gao F, Wen D Q, Wang Y N 2019 J. Appl. Phys. 125 023303
Google Scholar
[67] Godyak V A, Piejak R B 1990 Phys. Rev. Lett. 65 996
Google Scholar
[68] Lieberman M A 1989 IEEE Trans. Plasma Sci. Soc. 17 338
Google Scholar
[69] Kaganovich I D, Polomarov O V, Theodosiou C E 2006 IEEE Trans. Plasma Sci. 34 696
Google Scholar
[70] Gozadinos G, Turner M M, Vender D 2001 Phys. Rev. Lett. 87 135004
Google Scholar
[71] Lafleur T, Chabert P, Turner M M, Booth J P 2014 Plasma Sources Sci. Technol. 23 015016
Google Scholar
[72] Schulze J, Donkó Z, Derzsi A, et al. 2015 Plasma Sources Sci. Technol. 24 015019
Google Scholar
[73] Schulze J, Donkó Z, Lafleur T, Wilczek S, Brinkmann R P 2018 Plasma Sources Sci. Technol. 27 055010
Google Scholar
[74] Wilczek S, Schulze J, Brinkmann R P, Donkó Z, Trieschmann J, Mussenbrock T 2020 J. Appl. Phys. 127 181101
[75] Vass M, Wilczek S, Lafleur T, et al. 2020 Plasma Sources Sci. Technol. 29 085014
Google Scholar
[76] Vass M, Wilczek S, Lafleur T, et al. 2020 Plasma Sources Sci. Technol. 29 025019
Google Scholar
[77] Belenguer P, Boeuf J P 1990 Phys. Rev. A 41 4447
Google Scholar
[78] Booth J P, Curley G, Marić D, Chabert P 2010 Plasma Sources Sci. Technol. 19 015005
Google Scholar
[79] Liu G H, Liu Y X, Wen D Q, Wang Y N 2015 Plasma Sources Sci. Technol. 24 034006
Google Scholar
[80] Wang L, Wen D Q, Zhang Q Z, Song Y H, Zhang Y R, Wang Y N 2019 Plasma Sources Sci. Technol. 28 055007
Google Scholar
[81] Schulze J, Kampschulte T, Luggenholscher D, Czarnetzki U 2007 J. Phys. Conf. Ser. 86 012010
Google Scholar
[82] Berger B, You K, Lee H C, Mussenbrock T, Awakowicz P, Schulze J 2018 Plasma Sources Sci. Technol. 27 12LT02
Google Scholar
[83] Schüngel E, Brandt S, Donkó Z, et al. 2016 Plasma Sources Sci. Technol. 24 044009
Google Scholar
[84] Schulze J, Heil B G, Luggenhölscher D, Brinkmann R P, Czarnetzki U 2008 J. Phys. D: Appl. Phys. 41 195212
Google Scholar
[85] Schulze J, Heil B G, et al. 2008 J. Phys. D: Appl. Phys. 41 42003
Google Scholar
[86] Donkó Z, Schulze J, Czarnetzki U, Luggenhölscher D 2009 Appl. Phys. Lett. 94 131501
Google Scholar
[87] Schulze J, Donkó Z, Heil B G, Luggenhölscher D, Mussenbrock T, Brinkmann R P, Czarnetzki U 2008 J. Phys. D: Appl. Phys. 41 105214
Google Scholar
[88] Campanell M D, Khrabrov A V, Kaganovich I D 2012 Phys. Rev. Lett. 108 255001
Google Scholar
[89] Campanell M 2013 Phys. Rev. E 88 033103
Google Scholar
[90] Kushner M J 2003 J. Appl. Phys. 94 1436
Google Scholar
[91] Sharma S, Kaganovich I D, Khrabrov A V, Kaw P, Sen A 2018 Phys. Plasmas 25 080704
Google Scholar
[92] Krüger F, Wilczek S, Mussenbrock T, Schulze J 2019 Plasma Sources Sci. Technol. 28 075017
Google Scholar
[93] Zhang P, Zhang L, Xu L 2020 Plasma Processes Polym. 17 2000014
Google Scholar
[94] Zhang P, Zhang L, Lü K 2020 Plasma Chem. Plasma Process. 40 1605
Google Scholar
[95] Lee I, Graves D B, Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018
Google Scholar
[96] Liu J, Zhang Y, Zhao K, Wen D, Wang Y 2021 Plasma Sources Sci. Technol. 23 035401
Google Scholar
[97] Lieberman M A, Booth J P, Chabert P, et al. 2002 Plasma Sources Sci. Technol. 11 283
Google Scholar
[98] Chabert P, Raimbault J L, Rax J M, Lieberman M A 2004 Phys. Plasmas 11 1775
Google Scholar
[99] Rauf S, Bera K, Collins K 2008 Plasma Sources Sci. Technol. 17 035003
Google Scholar
[100] Kawamura E, Lieberman M A, Graves D B 2014 Plasma Sources Sci. Technol. 23 064003
Google Scholar
[101] Kawamura E, Lichtenberg A J, Lieberman M A, Marakhtanov A M 2016 Plasma Sources Sci. Technol. 25 035007
Google Scholar
[102] Sansonnens L, Howling A A, Hollenstein C 2006 Plasma Sources Sci. Technol. 15 302
Google Scholar
[103] Lieberman M A, Lichtenberg A J, Kawamura E, Chabert P 2016 Phys. Plasmas 23 013501
Google Scholar
[104] Yang Y, Kushner M J 2010 J. Phys. D: Appl. Phys. 43 152001
Google Scholar
[105] Yang Y, Kushner M J 2010 J. Appl. Phys. 108 113306
Google Scholar
[106] Schmidt H, Sansonnens L, Howling A A, Hollenstein C, Elyaakoubi M, Schmitt J P M 2004 J. Appl. Phys. 95 4559
Google Scholar
[107] Kawamura E, Wen D Q, Lieberman M A, Lichtenberg A J 2017 J. Vac. Sci. Technol., A 35 05c311
Google Scholar
[108] Zhao K, Liu Y X, Kawamura E, Wen D Q, Lieberman M A, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055017
Google Scholar
[109] Zhao K, Wen D Q, Liu Y X, Lieberman M A, Economou D J, Wang Y N 2019 Phys. Rev. Lett. 122 185002
Google Scholar
[110] Lieberman M A, Lichtenberg A J, Kawamura E, Marakhtanov A M 2015 Plasma Sources Sci. Technol. 24 055011
Google Scholar
[111] Surendra M, Graves D B 1991 Appl. Phys. Lett. 59 2091
Google Scholar
[112] Cao Z, Walsh J L, Kong M G 2009 Appl. Phys. Lett. 94 021501
Google Scholar
[113] Lee J K, Manuilenko O V, Babaeva N Y, Kim H C, Shon J W 2005 Plasma Sources Sci. Technol. 14 89
Google Scholar
[114] Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506
Google Scholar
[115] Heil B G, Schulze J, Mussenbrock T, Brinkmann R P, Czarnetzki U 2008 IEEE Trans. Plasma Sci. 36 1404
Google Scholar
[116] Schüngel E, Zhang Q Z, Iwashita S, Schulze J, Hou L J, Wang Y N, Czarnetzki U 2011 J. Phys. D: Appl. Phys. 44 285205
Google Scholar
[117] Zhang Q Z, Jiang W, Hou L J, Wang Y N 2011 J. Appl. Phys. 109 013308
Google Scholar
[118] Delattre P A, Lafleur T, Johnson E, Booth J P 2013 J. Phys. D: Appl. Phys. 46 235201
Google Scholar
[119] Bruneau B, Gans T, O'Connell D, Greb A, Johnson E V, Booth J P 2015 Phys. Rev. Lett. 114 125002
Google Scholar
[120] Bruneau B, Novikova T, Lafleur T, Booth J P, Johnson E V 2014 Plasma Sources Sci. Technol. 23 065010
Google Scholar
[121] Hartmann P, Wang L, Nösges K, et al. 2021 J. Phys. D: Appl. Phys. 54 255202
Google Scholar
[122] Schüngel E, Mohr S, Schulze J, Czarnetzki U 2015 Appl. Phys. Lett. 106 054108
Google Scholar
[123] Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055003
Google Scholar
[124] Korolov I, Steuer D, Bischoff L, Hübner G, Liu Y, Schulz-von der Gathen V, Böke M, Mussenbrock T, Schulze J 2021 J. Phys. D: Appl. Phys. 54 125203
Google Scholar
[125] Schulze J, Schüngel E, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 092005
Google Scholar
[126] Berger B, Brandt S, Franek J, Schüngel E, Koepke M, Mussenbrock T, Schulze J 2015 J. Appl. Phys. 118 223302
Google Scholar
[127] Schüngel E, Eremin D, Schulze J, Mussenbrock T, Czarnetzki U 2012 J. Appl. Phys. 112 053302
Google Scholar
[128] Yang S, Chang L, Zhang Y, Jiang W 2018 Plasma Sources Sci. Technol. 27 035008
Google Scholar
[129] Schulze J, Donko Z, Schüngel E, et al. 2011 Plasma Sources Sci. Technol. 20 45007
Google Scholar
[130] Donke Z, Schulze J, Hartmann P, et al. 2010 Appl. Phys. Lett. 97 033502
Google Scholar
[131] Lafleur T, Chabert P, Booth J P 2013 J. Phys. D: Appl. Phys. 46 135201
Google Scholar
[132] Proto A, Gudmundsson J T 2018 Atoms 6 65
Google Scholar
[133] Donkó Z, Schulze J, Hartmann P, Korolov I, Czarnetzki U, Schüngel E 2010 Appl. Phys. Lett. 97 081501
Google Scholar
[134] Derzsi A, Horváth B, Korolov I, Donkó Z, Schulze J 2019 J. Appl. Phys 126 043303
Google Scholar
[135] Phelps A V, Pitchford L C, Pédoussat C, Donkó Z 1999 Plasma Sources Sci. Technol. 8 B1
Google Scholar
[136] Daksha M, Derzsi A, Wilczek S, Trieschmann J, Mussenbrock T, Awakowicz P, Donkó Z, Schulze J 2017 Plasma Sources Sci. Technol. 26 085006
Google Scholar
[137] Daksha M, Derzsi A, Mujahid Z, Schulenberg D, Berger B, Donkó Z, Schulze J 2019 Plasma Sources Sci. Technol. 28 034002
Google Scholar
[138] Sun J Y, Wen D Q, Zhang Q Z, Liu Y X, Wang Y N 2019 Phys. Plasmas 26 063505
Google Scholar
[139] Derzsi A, Horváth B, Donkó Z, Schulze J 2020 Plasma Sources Sci. Technol. 29 074001
Google Scholar
[140] Oberberg M, Engel D, Berger B, Wölfel C, Eremin D, Lunze J, Brinkmann R P, Awakowicz P, Schulze J 2019 Plasma Sources Sci. Technol. 28 115021
Google Scholar
-
图 5 (a) 时空分布的电子碰撞电离图; (b) 电场图; (c) 电子密度图. 放电条件: 四氟化碳气体, L = 1.5 cm, P = 90 Pa, f = 40 MHz, 功率20 W, 单频波[79]
Fig. 5. Spatio-temporal plots of the ionization rate (a), electric field (b) and electron density (c). The discharge conditions are: CF4 gas, L = 1.5 cm, P = 90 Pa, f = 40 MHz, single frequency voltage waveform with a power 20 W[79].
图 6 (a) CF4放电中, 实验测得电子碰撞激发速率的时空分布图; (b) PIC/MCC模拟的电子碰撞电离速率时空分布图. 放电条件: L = 1.5 cm, P = 100 Pa, f = 8 MHz, V0 = 300 V[49]
Fig. 6. (a) Spatio-temporal plots of the exitation rate from experiment; (b) ionization rate from PIC/MCC simulations. The discharge conditions: CF4 gas, L = 1.5 cm, P = 100 Pa, f = 8 MHz, V0 = 300 V[49].
图 7 时空分布的电子碰撞解离速率图(第一列); 电子碰撞电离速率图(第二列); 电场图(第三列); 净电荷密度图(第四列)和电子吸收功率图(第五列); 放电条件: 氧气, L = 3 cm, P = 40 Pa, f = 6 MHz, V0 = 200 V[80]
Fig. 7. Spatio-temporal plots of the dissociation rate (first column), ionization rate (second column), electric field (third column), charge density (fourth column), and electron power absorption rate (fifth column). The discharge conditions: oxygen gas, L = 3 cm, P = 40 Pa, f = 6 MHz, V0 = 200 V[80].
图 8 (a) 放电中心位置的电流密度图; (b) 功率源极板鞘层电压图; (c) 鞘层电压的傅里叶分析图. 放电条件: 氩气, L = 2 cm, P = 20 mTorr, f = 13.56 MHz, Δτ = 6 ns, V0 = 400 V, 高斯波形
Fig. 8. (a) Current density at the discharge center; (b) voltage drop of the sheath at the powered electrode; (c) the Fourier spectrum of the sheath voltage at the powered electrode. Discharge conditions: Ar gas, L = 2 cm, P = 20 mTorr, f = 13.56 MHz, Δτ = 6 ns, V0 = 400 V, Gaussian waveform.
图 9 时空分布的(a)电场图、(b) 电子吸收功率图、(c) 电子碰撞激发率图. 放电条件: L = 2 cm, P = 20 mTorr, f = 13.56 MHz, Δτ = 6 ns, V0 = 400 V, 高斯波形
Fig. 9. Spatio-temporal plots of electric field (a), electron power absorption (b), and ionization rate (c). Discharge conditions: Argon gas, L = 2 cm, P = 20 mTorr, f = 13.56 MHz, Δτ = 6 ns, V0 = 400 V, Gaussian waveform.
图 10 PIC/MCC及玻尔兹曼分析模型给出的t/TRF = 0.5时, 磁场为0 G (a) 和200 G (b) 时接地极板附近电场的空间分布图. 放电条件: 氧气, L = 2.5 cm, P = 100 mTorr, f = 13.56 MHz, V0 = 300 V[15]
Fig. 10. Spatial distribution of the electric field near the grounded electrode from the PIC/MCC simulation and Boltzmann term analysis model at the time t/TRF = 0.5 at B = 0 G (a) and B = 200 G (b). Discharge conditions: oxygen gas, L = 2.5 cm, P = 100 mTorr, f = 13.56 MHz, V0 = 300 V[15].
图 14 随相位角的变化, 电子密度空间分布图. 放电条件: P = 200 mTorr, f = 13.56 MHz, V0 = 100 V, 两个半径为15 cm的平行板电极, 电极间隙为3 cm, 电极和侧壁之间的距离为5 cm[123]
Fig. 14. Spatial distributions of the electron density at different phase angles. Discharge conditions: P = 200 mTorr, f = 13.56 MHz, V0 = 100 V; the discharge is two plane and parallel electrodes with radii of 15 cm; the electrode gap is 3 cm, and the distance between electrodes and side-walls is 5 cm[123].
图 15 不同电压下, A和B两种情况下离子密度峰值及其比值, 其中情况A为两个极板材料都是铜; 情况B为功率电极材料为二氧化硅, 接地电极材料为铜; 放电条件: 氩气, L = 4.0 cm, P = 2.0 Pa, f = 13.56 MHz[138]
Fig. 15. Peak electron density in case A and case B and the peak density ratio as a function of the driving voltage amplitude. In case A, the surface material is Cu for both the powered and grounded electrode. In case B, the powered electrode is made of SiO2, while the grounded electrode is made of Cu. Discharge conditions: Argon gas, L = 4 cm, P = 2.0 Pa, f = 13.56 MHz[138].
图 16 时空分布的电场图(第一行)、电子功率吸收功率图(第二行)和电离速率图(第三行); 在磁场B = 0 G (第一列)、B = 50 G (第二列)、B = 100 G (第三列)和B = 200 G (第四列)下的时空分布图. 放电条件: 氧气, L = 2.5 cm, P = 100 mTorr, f = 13.56 MHz, V0 = 300 V[15]
Fig. 16. Spatio-temporal plots of the electric field (first row), electron power absorption rate (second row), and ionization rate (third row) at B = 0, 50, 100, 200 G. Discharge conditions: oxygen gas, L = 2.5 cm, P = 100 mTorr, f = 13.56 MHz, V0 = 300 V[15].
-
[1] Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharge for Materials Processing (New York: Wiley-Interscience) pp1−5
[2] Chabert P, Braithwaite N 2011 Physics of Radio-Frequency Plasmas (New York: Cambridge University Press)
[3] Hartmann P, Wang L, Nösges K, Berger B, Wilczek S, Brinkmann R P, Mussenbrock T, Juhasz Z, Donkó Z, Derzsi A, Lee E, Schulze J 2020 Plasma Sources Sci. Technol. 29 075014
Google Scholar
[4] Korolov I, Derzsi A, Donkó Z, Schulze J 2013 Appl. Phys. Lett. 103 064102
Google Scholar
[5] Schulze J, Schüngel E, Donkó Z, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 015017
Google Scholar
[6] Lafleur T, Booth J P 2012 J. Phys. D: Appl. Phys. 45 395203
Google Scholar
[7] Lafleur T, Delattre P A, Johnson E V, Booth J P 2012 Appl. Phys. Lett 101 124104
Google Scholar
[8] Bruneau B, Lafleur T, Booth J P, Johnson E 2016 Plasma Sources Sci. Technol. 25 025006
Google Scholar
[9] Donkó Z, Derzsi A, Vass M, Schulze J, Schuengel E, Hamaguchi S 2018 Plasma Sources Sci. Technol. 27 104008
Google Scholar
[10] Turner M M, Hutchinson D, Doyle R A, et al. 1996 Phys Rev Lett. 76 2069
Google Scholar
[11] Vasenkov A V 2004 J. Appl. Phys. 95 834
Google Scholar
[12] Zheng B, Y Fu, Wang K, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abe9f9Google Scholar
[13] Stefan R, Nikita B, Marcel R, et al. 2018 Plasma Sources Sci. Technol. 27 094001
Google Scholar
[14] Oberberg M, Berger B, Buschheuer M, Engel D, Wölfel C, Eremin D, Lunze J, Brinkmann R P, Awakowicz P, Schulze J 2020 Plasma Sources Sci. Technol. 29 075013
Google Scholar
[15] Wang L, Wen D Q, Hartmann P, Donkó Z, Derzsi A, Wang X F, Song Y H, Wang Y N, Schulze J 2020 Plasma Sources Sci. Technol. 29 105004
Google Scholar
[16] Yang S, Innocenti M E, Zhang Y, Yi L, Jiang W 2017 J. Vac. Sci. Technol., A 35 061311
Google Scholar
[17] Zhang Q Z, Wang Y N, Bogaerts A 2014 J. Appl. Phys. 115 3048
Google Scholar
[18] Wen D Q, Kawamura E, Lieberman M A, et al. 2017 J. Phys. D: Appl. Phys. 50 495201
Google Scholar
[19] Wang L, Peter H, Donko Z, Song Y H, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abf206Google Scholar
[20] Brandt S W, Berger B, Donko Z, et al. 2019 Plasma Sources Sci. Technol. 28 095021
Google Scholar
[21] Song S H, Kushner M J 2012 Plasma Sources Sci. Technol. 21 055028
Google Scholar
[22] Derzsi A, Lafleur T, Booth J P, et al. 2016 Plasma Sources Sci. Technol. 25 015004
Google Scholar
[23] Franek J, Brandt S, Berger B, Liese M, Barthel M, Schungel E, Schulze J 2015 Rev. Sci. Instrum. 86 053504
Google Scholar
[24] Schmidt F, Schulze J, Johnson E, Booth J P, Keil D, French D M, Trieschmann J, Mussenbrock T 2018 Plasma Sources Sci. Technol. 27 095012
Google Scholar
[25] Wang J K, Dine S, Booth J P, et al. 2019 J. Vac. Sci. Technol., A 37 021303
Google Scholar
[26] Cargill P J 2007 Plasma Phys. Controlled Fusion 49 197
Google Scholar
[27] Hammond E P, Mahesh K, Moin P J 2002 J. Comput. Phys. 176 402
Google Scholar
[28] Larson M G, Bengzon F 2013 The Finite Element Method: Theory, Implementation and Applications (Berlin, Heidelberg: Springer-Verlag)
[29] 陆金甫, 关治 2004 偏微分方程数值解法 (北京: 清华大学出版社) 第77−80页
Lu J P, Guan Z 2004 Numerical Methods for Partial Differential Equations (Beijing: Tsinghua University Press) pp77–80 (in Chinese)
[30] Rebiai S, Bahouh H, Sahli S 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1616
Google Scholar
[31] Liu Y X, Liang Y S, Wen D Q, Bi Z H, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025013
Google Scholar
[32] Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013
Google Scholar
[33] Czarnetzki U, Mussenbrock T, Brinkmann R P 2006 Phys. Plasmas 13 123503
Google Scholar
[34] Lieberman M A, Lichtenberg A J, Kawamura E, Mussenbrock T, Brinkmann R P 2008 Phys. Plasmas 15 063505
Google Scholar
[35] Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J, Wang Y N 2016 Plasma Sources Sci. Technol. 26 015007
Google Scholar
[36] Mussenbrock T, Brinkmann R P, Lieberman M A, Lichtenberg A J, Kawamura E 2008 Phys. Rev. Lett. 101 085004
Google Scholar
[37] Fu Y, Zheng B, Wen D Q, Zhang P, Fan Q H, Verboncoeur J P 2020 Plasma Sources Sci. Technol. 29 09lt01
Google Scholar
[38] Derzsi A, Korolov I, Schüngel E, Donkó Z, Schulze J 2015 Plasma Sources Sci. Technol. 24 034002
Google Scholar
[39] Horváth B, Daksha M, Korolov I, Derzsi A, Schulze J 2017 Plasma Sources Sci. Technol. 26 124001
Google Scholar
[40] Birdsall C K, Langdon A B 1985 Plasma Physics Via Computer Simulation (New York: McGraw-Hill)
[41] Verboncoeur J P 2005 Plasma Phys. Controlled Fusion 47 A231
Google Scholar
[42] Donkó Z, Derzsi A, Vass M, et al. 2021 arXiv:2103.09642 [physics.plasm-ph]
[43] Donkó Z 2011 Plasma Sources Sci. Technol. 20 024001
[44] Nanbu K 2000 IEEE Trans Dielectr. Electr. Insul. 28 971
Google Scholar
[45] Turner M M 1995 Phys. Rev. Lett. 75 1312
Google Scholar
[46] Schulze J, Derzsi A, Dittmann K, Hemke T, Meichsner J, Donko Z 2011 Phys. Rev. Lett. 107 275001
Google Scholar
[47] Kim H C, Lee J K 2004 Phys. Rev. Lett. 93 085003
Google Scholar
[48] Turner M M, Chabert P 2006 Phys. Rev. Lett. 96 205001
Google Scholar
[49] Liu Y X, Schungel E, Korolov I, Donko Z, Wang Y N, Schulze J 2016 Phys. Rev. Lett. 116 255002
Google Scholar
[50] Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002
Google Scholar
[51] Wilczek S, Trieschmann J, Eremin D, Brinkmann R P, Schulze J, Schuengel E, Derzsi A, Korolov I, Hartmann P, Donkó Z, Mussenbrock T 2016 Phys. Plasmas 23 063514
Google Scholar
[52] Jiang W, Wang H Y, Bi Z H, Wang Y N 2011 Plasma Sources Sci. Technol. 20 035013
Google Scholar
[53] Zhang Q Z, Zhao S X, Jiang W, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 305203
Google Scholar
[54] Eremin D, Bienholz S, Szeremley D, Trieschmann J, Ries S, Awakowicz P, Mussenbrock T, Brinkmann R P 2016 Plasma Sources Sci. Technol. 25 025020
Google Scholar
[55] Eremin D 2017 IEEE Trans. Plasma Sci. 45 527
Google Scholar
[56] Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J, Wang Y N 2017 Phys. Plasmas 24 083517
Google Scholar
[57] Eremin D, Brinkmann R P, Mussenbrock T 2017 Plasma Processes Polym. 14 1600164
Google Scholar
[58] Wen D Q, Zhang Q Z, Jiang W, et al. 2014 J. Appl. Phys. 115 233303
Google Scholar
[59] Wang L, Hartmann P, Donkó Z, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abf31dGoogle Scholar
[60] Gudmundsson J T, Kawamura E, Lieberman M A 2013 Plasma Sources Sci. Technol. 22 035011
Google Scholar
[61] Verboncoeur J P, Langdon A B, Gladd N T 1995 Comput. Phys. Commun. 87 199
Google Scholar
[62] 夏伯特P, 布雷斯韦特N 著(王友年, 徐军, 宋远红 译) 2015 射频离子体物理学 (北京: 科学出版社)
Chabert P, Braithwaite N (translated by Wang Y N, Xu J, Song Y H) 2015 Physics of Radio-Frequency Plasmas (Beijing: Science Press) (in Chinese)
[63] Liu J, Wen D Q, Liu Y X, Gao F, Lu W Q, Wang Y N 2013 J. Vac. Sci. Technol., A 31 061308
Google Scholar
[64] Zhu X M, Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001
Google Scholar
[65] Li J, Liu F X, Zhu X M, Pu Y K 2011 J. Phys. D: Appl. Phys. 44 292001
Google Scholar
[66] Xue C, Gao F, Wen D Q, Wang Y N 2019 J. Appl. Phys. 125 023303
Google Scholar
[67] Godyak V A, Piejak R B 1990 Phys. Rev. Lett. 65 996
Google Scholar
[68] Lieberman M A 1989 IEEE Trans. Plasma Sci. Soc. 17 338
Google Scholar
[69] Kaganovich I D, Polomarov O V, Theodosiou C E 2006 IEEE Trans. Plasma Sci. 34 696
Google Scholar
[70] Gozadinos G, Turner M M, Vender D 2001 Phys. Rev. Lett. 87 135004
Google Scholar
[71] Lafleur T, Chabert P, Turner M M, Booth J P 2014 Plasma Sources Sci. Technol. 23 015016
Google Scholar
[72] Schulze J, Donkó Z, Derzsi A, et al. 2015 Plasma Sources Sci. Technol. 24 015019
Google Scholar
[73] Schulze J, Donkó Z, Lafleur T, Wilczek S, Brinkmann R P 2018 Plasma Sources Sci. Technol. 27 055010
Google Scholar
[74] Wilczek S, Schulze J, Brinkmann R P, Donkó Z, Trieschmann J, Mussenbrock T 2020 J. Appl. Phys. 127 181101
[75] Vass M, Wilczek S, Lafleur T, et al. 2020 Plasma Sources Sci. Technol. 29 085014
Google Scholar
[76] Vass M, Wilczek S, Lafleur T, et al. 2020 Plasma Sources Sci. Technol. 29 025019
Google Scholar
[77] Belenguer P, Boeuf J P 1990 Phys. Rev. A 41 4447
Google Scholar
[78] Booth J P, Curley G, Marić D, Chabert P 2010 Plasma Sources Sci. Technol. 19 015005
Google Scholar
[79] Liu G H, Liu Y X, Wen D Q, Wang Y N 2015 Plasma Sources Sci. Technol. 24 034006
Google Scholar
[80] Wang L, Wen D Q, Zhang Q Z, Song Y H, Zhang Y R, Wang Y N 2019 Plasma Sources Sci. Technol. 28 055007
Google Scholar
[81] Schulze J, Kampschulte T, Luggenholscher D, Czarnetzki U 2007 J. Phys. Conf. Ser. 86 012010
Google Scholar
[82] Berger B, You K, Lee H C, Mussenbrock T, Awakowicz P, Schulze J 2018 Plasma Sources Sci. Technol. 27 12LT02
Google Scholar
[83] Schüngel E, Brandt S, Donkó Z, et al. 2016 Plasma Sources Sci. Technol. 24 044009
Google Scholar
[84] Schulze J, Heil B G, Luggenhölscher D, Brinkmann R P, Czarnetzki U 2008 J. Phys. D: Appl. Phys. 41 195212
Google Scholar
[85] Schulze J, Heil B G, et al. 2008 J. Phys. D: Appl. Phys. 41 42003
Google Scholar
[86] Donkó Z, Schulze J, Czarnetzki U, Luggenhölscher D 2009 Appl. Phys. Lett. 94 131501
Google Scholar
[87] Schulze J, Donkó Z, Heil B G, Luggenhölscher D, Mussenbrock T, Brinkmann R P, Czarnetzki U 2008 J. Phys. D: Appl. Phys. 41 105214
Google Scholar
[88] Campanell M D, Khrabrov A V, Kaganovich I D 2012 Phys. Rev. Lett. 108 255001
Google Scholar
[89] Campanell M 2013 Phys. Rev. E 88 033103
Google Scholar
[90] Kushner M J 2003 J. Appl. Phys. 94 1436
Google Scholar
[91] Sharma S, Kaganovich I D, Khrabrov A V, Kaw P, Sen A 2018 Phys. Plasmas 25 080704
Google Scholar
[92] Krüger F, Wilczek S, Mussenbrock T, Schulze J 2019 Plasma Sources Sci. Technol. 28 075017
Google Scholar
[93] Zhang P, Zhang L, Xu L 2020 Plasma Processes Polym. 17 2000014
Google Scholar
[94] Zhang P, Zhang L, Lü K 2020 Plasma Chem. Plasma Process. 40 1605
Google Scholar
[95] Lee I, Graves D B, Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018
Google Scholar
[96] Liu J, Zhang Y, Zhao K, Wen D, Wang Y 2021 Plasma Sources Sci. Technol. 23 035401
Google Scholar
[97] Lieberman M A, Booth J P, Chabert P, et al. 2002 Plasma Sources Sci. Technol. 11 283
Google Scholar
[98] Chabert P, Raimbault J L, Rax J M, Lieberman M A 2004 Phys. Plasmas 11 1775
Google Scholar
[99] Rauf S, Bera K, Collins K 2008 Plasma Sources Sci. Technol. 17 035003
Google Scholar
[100] Kawamura E, Lieberman M A, Graves D B 2014 Plasma Sources Sci. Technol. 23 064003
Google Scholar
[101] Kawamura E, Lichtenberg A J, Lieberman M A, Marakhtanov A M 2016 Plasma Sources Sci. Technol. 25 035007
Google Scholar
[102] Sansonnens L, Howling A A, Hollenstein C 2006 Plasma Sources Sci. Technol. 15 302
Google Scholar
[103] Lieberman M A, Lichtenberg A J, Kawamura E, Chabert P 2016 Phys. Plasmas 23 013501
Google Scholar
[104] Yang Y, Kushner M J 2010 J. Phys. D: Appl. Phys. 43 152001
Google Scholar
[105] Yang Y, Kushner M J 2010 J. Appl. Phys. 108 113306
Google Scholar
[106] Schmidt H, Sansonnens L, Howling A A, Hollenstein C, Elyaakoubi M, Schmitt J P M 2004 J. Appl. Phys. 95 4559
Google Scholar
[107] Kawamura E, Wen D Q, Lieberman M A, Lichtenberg A J 2017 J. Vac. Sci. Technol., A 35 05c311
Google Scholar
[108] Zhao K, Liu Y X, Kawamura E, Wen D Q, Lieberman M A, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055017
Google Scholar
[109] Zhao K, Wen D Q, Liu Y X, Lieberman M A, Economou D J, Wang Y N 2019 Phys. Rev. Lett. 122 185002
Google Scholar
[110] Lieberman M A, Lichtenberg A J, Kawamura E, Marakhtanov A M 2015 Plasma Sources Sci. Technol. 24 055011
Google Scholar
[111] Surendra M, Graves D B 1991 Appl. Phys. Lett. 59 2091
Google Scholar
[112] Cao Z, Walsh J L, Kong M G 2009 Appl. Phys. Lett. 94 021501
Google Scholar
[113] Lee J K, Manuilenko O V, Babaeva N Y, Kim H C, Shon J W 2005 Plasma Sources Sci. Technol. 14 89
Google Scholar
[114] Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506
Google Scholar
[115] Heil B G, Schulze J, Mussenbrock T, Brinkmann R P, Czarnetzki U 2008 IEEE Trans. Plasma Sci. 36 1404
Google Scholar
[116] Schüngel E, Zhang Q Z, Iwashita S, Schulze J, Hou L J, Wang Y N, Czarnetzki U 2011 J. Phys. D: Appl. Phys. 44 285205
Google Scholar
[117] Zhang Q Z, Jiang W, Hou L J, Wang Y N 2011 J. Appl. Phys. 109 013308
Google Scholar
[118] Delattre P A, Lafleur T, Johnson E, Booth J P 2013 J. Phys. D: Appl. Phys. 46 235201
Google Scholar
[119] Bruneau B, Gans T, O'Connell D, Greb A, Johnson E V, Booth J P 2015 Phys. Rev. Lett. 114 125002
Google Scholar
[120] Bruneau B, Novikova T, Lafleur T, Booth J P, Johnson E V 2014 Plasma Sources Sci. Technol. 23 065010
Google Scholar
[121] Hartmann P, Wang L, Nösges K, et al. 2021 J. Phys. D: Appl. Phys. 54 255202
Google Scholar
[122] Schüngel E, Mohr S, Schulze J, Czarnetzki U 2015 Appl. Phys. Lett. 106 054108
Google Scholar
[123] Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055003
Google Scholar
[124] Korolov I, Steuer D, Bischoff L, Hübner G, Liu Y, Schulz-von der Gathen V, Böke M, Mussenbrock T, Schulze J 2021 J. Phys. D: Appl. Phys. 54 125203
Google Scholar
[125] Schulze J, Schüngel E, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 092005
Google Scholar
[126] Berger B, Brandt S, Franek J, Schüngel E, Koepke M, Mussenbrock T, Schulze J 2015 J. Appl. Phys. 118 223302
Google Scholar
[127] Schüngel E, Eremin D, Schulze J, Mussenbrock T, Czarnetzki U 2012 J. Appl. Phys. 112 053302
Google Scholar
[128] Yang S, Chang L, Zhang Y, Jiang W 2018 Plasma Sources Sci. Technol. 27 035008
Google Scholar
[129] Schulze J, Donko Z, Schüngel E, et al. 2011 Plasma Sources Sci. Technol. 20 45007
Google Scholar
[130] Donke Z, Schulze J, Hartmann P, et al. 2010 Appl. Phys. Lett. 97 033502
Google Scholar
[131] Lafleur T, Chabert P, Booth J P 2013 J. Phys. D: Appl. Phys. 46 135201
Google Scholar
[132] Proto A, Gudmundsson J T 2018 Atoms 6 65
Google Scholar
[133] Donkó Z, Schulze J, Hartmann P, Korolov I, Czarnetzki U, Schüngel E 2010 Appl. Phys. Lett. 97 081501
Google Scholar
[134] Derzsi A, Horváth B, Korolov I, Donkó Z, Schulze J 2019 J. Appl. Phys 126 043303
Google Scholar
[135] Phelps A V, Pitchford L C, Pédoussat C, Donkó Z 1999 Plasma Sources Sci. Technol. 8 B1
Google Scholar
[136] Daksha M, Derzsi A, Wilczek S, Trieschmann J, Mussenbrock T, Awakowicz P, Donkó Z, Schulze J 2017 Plasma Sources Sci. Technol. 26 085006
Google Scholar
[137] Daksha M, Derzsi A, Mujahid Z, Schulenberg D, Berger B, Donkó Z, Schulze J 2019 Plasma Sources Sci. Technol. 28 034002
Google Scholar
[138] Sun J Y, Wen D Q, Zhang Q Z, Liu Y X, Wang Y N 2019 Phys. Plasmas 26 063505
Google Scholar
[139] Derzsi A, Horváth B, Donkó Z, Schulze J 2020 Plasma Sources Sci. Technol. 29 074001
Google Scholar
[140] Oberberg M, Engel D, Berger B, Wölfel C, Eremin D, Lunze J, Brinkmann R P, Awakowicz P, Schulze J 2019 Plasma Sources Sci. Technol. 28 115021
Google Scholar
计量
- 文章访问数: 10226
- PDF下载量: 375
- 被引次数: 0