Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical analysis of tunable double plasmon induced transparency in three-ellipse-shaped resonator coupled waveguide

Gu Xin Zhang Hui-Fang Li Ming-Yu Chen Jun-Ya He Ying

Citation:

Theoretical analysis of tunable double plasmon induced transparency in three-ellipse-shaped resonator coupled waveguide

Gu Xin, Zhang Hui-Fang, Li Ming-Yu, Chen Jun-Ya, He Ying
PDF
HTML
Get Citation
  • The tunable double plasmon-induced transparency (PIT) effects are investigated in a waveguide coupled by the three ellipse-shaped resonators. By the finite element method, we study the influences of coupling modes of the three ellipse-shaped resonators, waveguide structure parameters and the refractive indices of dielectric in three ellipse-shaped resonators on double PIT effects. The waveguide structure consists of three ellipse-shaped resonators, and is similar to a four-level structure of the atomic system. The bottom ellipse-shaped resonator can be named a bright mode, the middle and top ellipse-shaped resonators each can be seen as a dark mode. In order to obtain an ideal double PIT transparency window, we also numerically analyze the optical transmission characteristics of structures of several three-ellipse-shaped resonator coupled waveguides. Furthermore, we mainly discuss the transmission spectra in the better three-ellipse-shaped resonator coupled waveguide structure as a function of the radii of the long axis in ellipse-shaped resonators, the coupling distance between the bottom ellipse-shaped resonator and the bus waveguide, the coupling distance between ellipse-shaped resonators, and the symmetry broken degree. In addition, we also consider the effect of the refractive indices of dielectric in three ellipse-shaped resonators on double PIT spectra. It is found that the transmission spectra in the three-ellipse-shaped resonator coupled waveguide have obvious red shift when the refractive indices of dielectric in the three ellipse-shaped resonators increase. All the simulation results may provide the theoretical basis for the potential application of multiple PIT in plasma switches and sensors.
      Corresponding author: Zhang Hui-Fang, hfzhang1967@shu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11804219).
    [1]

    Ritchie R H 1957 Phys. Rev. 106 874Google Scholar

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [3]

    Dionne J A, Sweatlock L A, Atwater H A, Polman A 2006 Phys. Rev. B 73 035407Google Scholar

    [4]

    Galvez F, del Valle J, Gomez A, Osorio M R, Granados D, Perez de Lara D, Garcia M A, Vicent J L 2016 Opt. Materials Express 6 3086Google Scholar

    [5]

    Yang X Y, Hua E, Su H, Guo J, Yan S B 2020 Sensors 20 4125Google Scholar

    [6]

    陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华 2019 68 237301Google Scholar

    Chen Y, Xie J C, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301Google Scholar

    [7]

    Han X, Wang T, Li X, Zhu Y 2016 Plasmonics 11 729Google Scholar

    [8]

    杨韵茹, 关建飞 2016 65 057301Google Scholar

    Yang Y R, Guan J F 2016 Acta Phys. Sin. 65 057301Google Scholar

    [9]

    Liu X, Li J N, Chen J F, Rohimah S, Tian H, Wang J F 2021 Opt. Express 29 20829Google Scholar

    [10]

    祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤 2018 67 197301Google Scholar

    Qi Y P, Zhang X W, Zhou P Y, Hu B B, Wang X Y 2018 Acta Phys. Sin. 67 197301Google Scholar

    [11]

    Hao X X, Huo Y P, He Q, Guo Y Y, Niu Q Q, Cui P F, Wang Y Y, Song M N 2021 Phys. Scripta 96 075505Google Scholar

    [12]

    Amrani M, Khattou S, Rezzouk Y, Mouadili A, Noual A, El Boudouti E H, Djafari-Rouhani B 2022 J. Phys. D: Appl. Phys. 55 075106Google Scholar

    [13]

    Zhang Z, Yang J, He X, Han Y, Zhang J, Huang J, Chen D 2018 Appl. Sci. 8 462Google Scholar

    [14]

    Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [15]

    褚培新, 张玉斌, 陈俊学 2020 69 134205Google Scholar

    Chu P X, Zhang Y B, Chen J X 2020 Acta Phys. Sin. 69 134205Google Scholar

    [16]

    Chen M M, Xiao Z Y, Lu X J 2020 Carbon 159 273Google Scholar

    [17]

    Li M W, Liang C P, Zhang Y B, Yi Z, Chen X F, Zhou Z G, Yang H, Tang Y J, Yi Y G 2019 Results Phys. 15 102603Google Scholar

    [18]

    Wang X J, Meng H Y, Deng S Y, Lao C D, Wei Z C, Wang F H, Tan C G, Huang X 2019 Nanomaterials 9 385Google Scholar

    [19]

    Liu L, Xia S X, Luo X, Zhai X, Yu Y B, Wang L L 2018 Opt. Commun. 418 27Google Scholar

    [20]

    Waks E, Vuckovic J 2006 Phys. Rev. Lett. 96 153601Google Scholar

    [21]

    Marco P, Dario G, Liam O F, Claudio A L 2018 Opt. Express 26 8470Google Scholar

    [22]

    Li J J, Tian J P, Yang R C 2019 Eur. Phys. J. D 73 230Google Scholar

    [23]

    Han X, Wang T, Li X M, Liu B, He Y, Tang J 2015 J. Phys. D: Appl. Phys. 48 235102Google Scholar

    [24]

    Niu Y Y, Wang J C, Liu D D, Hu Z D, Sang T, Gao S M 2017 Optik 140 1038Google Scholar

    [25]

    Wang G X, Lu H, Liu X M 2012 Opt. Express 20 020902Google Scholar

    [26]

    Wen K H, Yan L S, Pan W, Luo B, Guo Z, Guo Y H, Luo X G 2014 J. Light. Technol. 32 1701Google Scholar

    [27]

    Cao G T, Li H J, Zhan S P, Xu H Q, Liu Z M, He Z H, Wang Y 2013 Opt. Express 21 9198Google Scholar

    [28]

    Wang Y Q, He Z H, Cui W, Ren X C, Li C J, Xue W W, Cao D M, Li G, Lei W L 2020 Results Phys. 16 102981Google Scholar

    [29]

    李继军, 吴耀德, 宋明玉 2007 长江大学学报(自科版)理工卷 4 1673Google Scholar

    Li J J, Wu Y D, Song M Y 2007 J. Yangtze University (Nat. Sci. Edit) Sci. Eng. V. 4 1673Google Scholar

    [30]

    Li Z F, Wen K H, Fang Y H, Guo Z C 2020 IEEE J. Quantum Electron. 56 2982249Google Scholar

    [31]

    Qiong Z, Wang Z 2019 Opt. Express 27 303Google Scholar

    [32]

    Yin X G, Feng T H, Yip S, Liang Z X, Hui A, Ho J C, Li J S 2013 Appl. Phys. Lett. 103 021115Google Scholar

    [33]

    Xu H, Lu Y, Lee Y, Ham B S 2010 Opt. Express 18 17736Google Scholar

    [34]

    Zhu Y, Hu X Y, Yang H, Gong Q H 2014 Sci. Rep. UK 4 3752Google Scholar

    [35]

    闫西成 2018 硕士学位论文(武汉:华中科技大学) (Wuhan: Huazhong University of Science & Technology)

    Yan X C 2018 M. S. Thesis (Wuhan: Huazhong University of Science & Technology

    [36]

    Ye C G, Zhang L 2008 Opt. Lett. 33 1911Google Scholar

  • 图 1  (a) 三椭圆谐振腔耦合波导结构(三椭圆腔左右放置且s1 = s2); (b) 双椭圆(黑色虚线)和三椭圆(红色实线)波导结构透射谱;(c)−(g) 三椭圆腔波导结构中波长分别为849, 855, 860, 866, 883 nm时的电场分布

    Figure 1.  (a) Schematic diagram of three ellipse-shaped resonators coupled waveguide structure (three ellipse-shaped resonators are placed left and right and s1 = s2); (b) transmission spectra of the two (black dash) and three (red solid) ellipse-shaped resonators waveguide structure; (c)−(g) electric field distribution of three ellipse-shaped resonators waveguide structure at wavelength of 849, 855, 860, 866, 883 nm, respectively.

    图 2  (a) 三椭圆谐振腔耦合波导结构(三椭圆腔左右放置且s1 = 0); (b) 双椭圆(黑色虚线)和三椭圆(红色实线)波导结构透射谱;(c)−(g) 三椭圆腔波导结构中波长分别为844, 851, 867, 877, 888 nm时的电场分布

    Figure 2.  (a) Schematic diagram of three ellipse-shaped resonators coupled waveguide structure (three ellipse-shaped resonators are placed left and right and s1 = 0); (b) transmission spectra of two (black dash) and three (red solid) ellipse-shaped resonators waveguide structure; (c)−(g) electric field distribution of three ellipse-shaped resonators waveguide structure at wavelength of 844, 851, 867, 877, 888 nm, respectively.

    图 3  (a) 三椭圆谐振腔耦合波导结构(三椭圆腔左右放置且s2 = 0); (b) 双椭圆(黑色虚线)和三椭圆(红色实线)波导结构透射谱;(c)−(g) 三椭圆腔波导结构中波长分别为846, 858, 866, 883, 897 nm时的电场分布

    Figure 3.  (a) Schematic diagram of three ellipse-shaped resonators coupled waveguide structure (three ellipse-shaped resonators are placed left and right and s2 = 0); (b) transmission spectra of two (black dash) and three (red solid) ellipse-shaped resonators waveguide structure; (c)−(g) electric field distribution of three ellipse-shaped resonators waveguide structure at wavelength of 846, 858, 866, 883, 897 nm, respectively.

    图 4  (a) 三椭圆谐振腔耦合波导结构(三椭圆腔在一条直线上竖直放置); (b) 双椭圆(黑色虚线)和三椭圆(红色实线)波导结构透射谱; (c)−(g) 三椭圆腔波导结构中波长分别为845, 851, 867, 878, 889 nm时的电场分布

    Figure 4.  (a) Schematic diagram of three ellipse-shaped resonators coupled waveguide structure (three ellipse-shaped resonators are placed vertically in a straight line); (b) transmission spectra of two (black dash) and three (red solid) ellipse-shaped resonators waveguide structure; (c)−(g) electric field distribution of three ellipse-shaped resonators waveguide structure at wavelength of 845, 851, 867, 878, 889 nm, respectively.

    图 5  (a) 轴对称三椭圆谐振腔耦合波导结构(三椭圆腔倒等腰三角形放置且O3O1 = O3O2); (b) 非轴对称(黑色虚线)和轴对称(红色实线)三椭圆腔波导结构透射谱; (c)−(e) 轴对称波导结构中波长分别为865, 876, 883 nm时的电场分布

    Figure 5.  (a) Schematic diagram of the axisymmetric three ellipse-shaped resonators coupled waveguide structure (three ellipse-shaped resonators are placed in an inverted isosceles triangle and O3O1 = O3O2); (b) transmission spectra of the non-axisymmetric (black dash) and the axisymmetric (red solid) three ellipse-shaped resonators waveguide structure; (c)−(e) electric field distribution of the axisymmetric three ellipse-shaped resonators waveguide structure at wavelength of 865, 876, 883 nm, respectively.

    图 6  (a) 轴对称三椭圆谐振腔耦合波导结构(三椭圆腔正等腰三角形放置且O2O1 = O2O3); (b) 非轴对称(黑色虚线)和轴对称(红色实线)三椭圆腔波导结构透射谱; (c)−(e) 轴对称波导结构中波长分别为853, 879, 895 nm时的电场分布

    Figure 6.  (a) Schematic diagram of the axisymmetric three ellipse-shaped resonators coupled waveguide structure (three ellipse-shaped resonators are placed in a positive isosceles triangle and O2O1 = O2O3); (b) transmission spectra of the non-axisymmetric (black dash) and the axisymmetric (red solid) three ellipse-shaped resonators waveguide structure; (c)−(e) electric field distribution of the axisymmetric three ellipse-shaped resonators waveguide structure at wavelength of 853, 879, 895 nm, respectively.

    图 7  三椭圆腔耦合波导结构双PIT效应实验设计示意简图

    Figure 7.  Schematic diagram of experimental design of double PIT effects for the three ellipse-shaped resonators coupled waveguide structure.

    图 8  当改变椭圆腔长轴半径时, 三椭圆谐振腔波导结构的透射谱 (a)−(c) 改变顶部椭圆腔长轴半径r1; (d)−(f) 改变中部椭圆腔长轴半径r2; (g)−(i) 改变底部椭圆腔长轴半径r3; (j)—(l) 改变r1r3

    Figure 8.  Transmission spectra in the three ellipse-shaped resonators coupled waveguide structure when changing the long-axis radius of the elliptical cavity: (a)−(c) Change radius of the long axis r1 in the top ellipse-shaped resonator; (d)−(f) change r2 in the middle ellipse-shaped resonator; (g)−(i) change r3 in the bottom ellipse-shaped resonator; (j)−(l) change r1 and r3.

    图 9  三椭圆谐振腔波导结构透射谱随结构参数的变化 (a) 当x1 = x2 = 0, h = c = 10 nm时, 透射谱随H的变化; (b) 当x1 = x2 = 0, H = c = 10 nm时, 透射谱随h的变化; (c) 当x1 = x2 = 0, H = h = 10 nm时, 透射谱随c的变化; (d), (e) 当H = h = c = 10 nm时, 透射谱随x1x2的变化; (f) 当x1 = x2 = 0, H = h = 10 nm时, 透射谱随n的变化

    Figure 9.  Transmission spectra in the three ellipse-shaped resonators coupled waveguide structure with different parameters: (a) With H when x1 = x2 = 0, h = c = 10 nm; (b) with h when x1 = x2 = 0, H = c =10 nm; (c) with c when x1 = x2 = 0, H = h = 10 nm; (d), (e) with x1 and x2 when H = h = c = 10 nm; (f) with n when x1 = x2 = 0, H = h = 10 nm.

    Baidu
  • [1]

    Ritchie R H 1957 Phys. Rev. 106 874Google Scholar

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [3]

    Dionne J A, Sweatlock L A, Atwater H A, Polman A 2006 Phys. Rev. B 73 035407Google Scholar

    [4]

    Galvez F, del Valle J, Gomez A, Osorio M R, Granados D, Perez de Lara D, Garcia M A, Vicent J L 2016 Opt. Materials Express 6 3086Google Scholar

    [5]

    Yang X Y, Hua E, Su H, Guo J, Yan S B 2020 Sensors 20 4125Google Scholar

    [6]

    陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华 2019 68 237301Google Scholar

    Chen Y, Xie J C, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301Google Scholar

    [7]

    Han X, Wang T, Li X, Zhu Y 2016 Plasmonics 11 729Google Scholar

    [8]

    杨韵茹, 关建飞 2016 65 057301Google Scholar

    Yang Y R, Guan J F 2016 Acta Phys. Sin. 65 057301Google Scholar

    [9]

    Liu X, Li J N, Chen J F, Rohimah S, Tian H, Wang J F 2021 Opt. Express 29 20829Google Scholar

    [10]

    祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤 2018 67 197301Google Scholar

    Qi Y P, Zhang X W, Zhou P Y, Hu B B, Wang X Y 2018 Acta Phys. Sin. 67 197301Google Scholar

    [11]

    Hao X X, Huo Y P, He Q, Guo Y Y, Niu Q Q, Cui P F, Wang Y Y, Song M N 2021 Phys. Scripta 96 075505Google Scholar

    [12]

    Amrani M, Khattou S, Rezzouk Y, Mouadili A, Noual A, El Boudouti E H, Djafari-Rouhani B 2022 J. Phys. D: Appl. Phys. 55 075106Google Scholar

    [13]

    Zhang Z, Yang J, He X, Han Y, Zhang J, Huang J, Chen D 2018 Appl. Sci. 8 462Google Scholar

    [14]

    Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [15]

    褚培新, 张玉斌, 陈俊学 2020 69 134205Google Scholar

    Chu P X, Zhang Y B, Chen J X 2020 Acta Phys. Sin. 69 134205Google Scholar

    [16]

    Chen M M, Xiao Z Y, Lu X J 2020 Carbon 159 273Google Scholar

    [17]

    Li M W, Liang C P, Zhang Y B, Yi Z, Chen X F, Zhou Z G, Yang H, Tang Y J, Yi Y G 2019 Results Phys. 15 102603Google Scholar

    [18]

    Wang X J, Meng H Y, Deng S Y, Lao C D, Wei Z C, Wang F H, Tan C G, Huang X 2019 Nanomaterials 9 385Google Scholar

    [19]

    Liu L, Xia S X, Luo X, Zhai X, Yu Y B, Wang L L 2018 Opt. Commun. 418 27Google Scholar

    [20]

    Waks E, Vuckovic J 2006 Phys. Rev. Lett. 96 153601Google Scholar

    [21]

    Marco P, Dario G, Liam O F, Claudio A L 2018 Opt. Express 26 8470Google Scholar

    [22]

    Li J J, Tian J P, Yang R C 2019 Eur. Phys. J. D 73 230Google Scholar

    [23]

    Han X, Wang T, Li X M, Liu B, He Y, Tang J 2015 J. Phys. D: Appl. Phys. 48 235102Google Scholar

    [24]

    Niu Y Y, Wang J C, Liu D D, Hu Z D, Sang T, Gao S M 2017 Optik 140 1038Google Scholar

    [25]

    Wang G X, Lu H, Liu X M 2012 Opt. Express 20 020902Google Scholar

    [26]

    Wen K H, Yan L S, Pan W, Luo B, Guo Z, Guo Y H, Luo X G 2014 J. Light. Technol. 32 1701Google Scholar

    [27]

    Cao G T, Li H J, Zhan S P, Xu H Q, Liu Z M, He Z H, Wang Y 2013 Opt. Express 21 9198Google Scholar

    [28]

    Wang Y Q, He Z H, Cui W, Ren X C, Li C J, Xue W W, Cao D M, Li G, Lei W L 2020 Results Phys. 16 102981Google Scholar

    [29]

    李继军, 吴耀德, 宋明玉 2007 长江大学学报(自科版)理工卷 4 1673Google Scholar

    Li J J, Wu Y D, Song M Y 2007 J. Yangtze University (Nat. Sci. Edit) Sci. Eng. V. 4 1673Google Scholar

    [30]

    Li Z F, Wen K H, Fang Y H, Guo Z C 2020 IEEE J. Quantum Electron. 56 2982249Google Scholar

    [31]

    Qiong Z, Wang Z 2019 Opt. Express 27 303Google Scholar

    [32]

    Yin X G, Feng T H, Yip S, Liang Z X, Hui A, Ho J C, Li J S 2013 Appl. Phys. Lett. 103 021115Google Scholar

    [33]

    Xu H, Lu Y, Lee Y, Ham B S 2010 Opt. Express 18 17736Google Scholar

    [34]

    Zhu Y, Hu X Y, Yang H, Gong Q H 2014 Sci. Rep. UK 4 3752Google Scholar

    [35]

    闫西成 2018 硕士学位论文(武汉:华中科技大学) (Wuhan: Huazhong University of Science & Technology)

    Yan X C 2018 M. S. Thesis (Wuhan: Huazhong University of Science & Technology

    [36]

    Ye C G, Zhang L 2008 Opt. Lett. 33 1911Google Scholar

  • [1] Chen Zhao, Ma Xin-Xin, Li Tong, Wang Yi-Lin. Optical pressure sensor based on Fano resonance in a coupled resonator system. Acta Physica Sinica, 2024, 73(8): 084205. doi: 10.7498/aps.73.20232025
    [2] Nong Jie, Zhang Yi-Yi, Wei Xue-Ling, Jiang Xin-Peng, Li Ning, Wang Dong-Ying, Xiao Si-Yang, Chen Hong-Ting, Zhang Zhen-Rong, Yang Jun-Bo. Research on realizing high permeability and laser stealth compatibility in visible light band with dielectric/metal/dielectric film system. Acta Physica Sinica, 2023, 72(17): 177802. doi: 10.7498/aps.72.20230855
    [3] Wang Bo-Yun, Zhu Zi-Hao, Gao You-Kang, Zeng Qing-Dong, Liu Yang, Du Jun, Wang Tao, Yu Hua-Qing. Plasmon induced transparency effect based on graphene nanoribbon waveguide side-coupled with rectangle cavities system. Acta Physica Sinica, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [4] Zhu Zi-Hao, Gao You-Kang, Zeng Yan, Cheng Zheng, Ma Hong-Hua, Yi Xu-Nong. Three-band plasmon induced transparency effect based on four-disk resonator coupled waveguide system. Acta Physica Sinica, 2022, 71(24): 244201. doi: 10.7498/aps.71.20221397
    [5] Plasmon induced transparency effect based on graphene nanoribbon waveguide side–coupled with rectangle cavities system. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211397
    [6] Hu Bao-Jing, Huang Ming, Li Peng, Yang Jing-Jing. Multiband plasmon-induced transparency based on nanometals-graphene hybrid model. Acta Physica Sinica, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [7] Guan Fu-Xin, Dong Shao-Hua, He Qiong, Xiao Shi-Yi, Sun Shu-Lin, Zhou Lei. Scatterings and wavefront manipulations of surface plasmon polaritons. Acta Physica Sinica, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [8] Wang Shuai, Deng Zi-Lan, Wang Fa-Qiang, Wang Xiao-Lei, Li Xiang-Ping. Role of optical angular momentum in enhanced transmission process of plasmonic coaxial nanoring aperture. Acta Physica Sinica, 2019, 68(7): 077801. doi: 10.7498/aps.68.20182017
    [9] Chen Ying, Xie Jin-Chao, Zhou Xin-De, Zhang Can, Yang Hui, Li Shao-Hua. Semi-closed T-shaped-disk waveguide filter based on surface-plasmon-induced transparency. Acta Physica Sinica, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [10] Qi Yun-Ping, Zhou Pei-Yang, Zhang Xue-Wei, Yan Chun-Man, Wang Xiang-Xian. Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure. Acta Physica Sinica, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [11] Qi Yun-Ping, Zhang Xue-Wei, Zhou Pei-Yang, Hu Bing-Bing, Wang Xiang-Xian. Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure. Acta Physica Sinica, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [12] Wang Wei, Gao She-Sheng, Meng Yang. Transmission characteristics of surface plasmon polaritons in -shaped resonator. Acta Physica Sinica, 2017, 66(1): 017301. doi: 10.7498/aps.66.017301
    [13] Yang Yun-Ru, Guan Jian-Fei. Numerical study of plasmonic filter based on metal-insulator-metal waveguide. Acta Physica Sinica, 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [14] Zhang Yong-Yuan, Luo Li-Na, Zhang Zhong-Yue. Surface plasmon polaritons splitting properties of silver cross nanowires. Acta Physica Sinica, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [15] Luo Song, Fu Tong, Zhang Zhong-Yue. Fano resonance in sliver circular gap embedded with a sliver nanorod. Acta Physica Sinica, 2013, 62(14): 147303. doi: 10.7498/aps.62.147303
    [16] Qin Yan, Cao Wei, Zhang Zhong-Yue. Enhanced optical transmission through metallic slits embedded with rectangular cavities. Acta Physica Sinica, 2013, 62(12): 127302. doi: 10.7498/aps.62.127302
    [17] Zhang Zhi-Dong, Zhao Ya-Nan, Lu Dong, Xiong Zu-Hong, Zhang Zhong-Yue. Numerical investigation of the metal-insulator-metal waveguide filter based on the arc-shaped resonator. Acta Physica Sinica, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [18] Chen Yuan-Yuan, Zou Ren-Hua, Song Gang, Zhang Kai, Yu Li, Zhao Yu-Fang, Xiao Jing-Hua. The polarization characteristics of the excitation and emission of surface plasmon polarization in the Ag nanowires. Acta Physica Sinica, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [19] Liu Bing-Can, Lu Zhi-Xin, Yu Li. The dispersion relation for surface plasmon at a metal-Kerr nonlinear medium interface. Acta Physica Sinica, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [20] Miao Jiang-Ping, Wu Zong-Han, Sun Cheng-Xiu, Sun Yue-Ming. The self-consistent theoretical study of the effect of surface plasmon and polariton on electronic transport. Acta Physica Sinica, 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
Metrics
  • Abstract views:  3825
  • PDF Downloads:  58
  • Cited By: 0
Publishing process
  • Received Date:  09 July 2022
  • Accepted Date:  05 September 2022
  • Available Online:  12 December 2022
  • Published Online:  24 December 2022

/

返回文章
返回
Baidu
map