Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Discharge characteristics and parameter diagnosis of brush-shaped air plasma plumes under auxiliary discharge

Zhang Xue-Xue Jia Peng-Ying Ran Jun-Xia Li Jin-Mao Sun Huan-Xia Li Xue-Chen

Citation:

Discharge characteristics and parameter diagnosis of brush-shaped air plasma plumes under auxiliary discharge

Zhang Xue-Xue, Jia Peng-Ying, Ran Jun-Xia, Li Jin-Mao, Sun Huan-Xia, Li Xue-Chen
PDF
HTML
Get Citation
  • Atmospheric pressure plasma jet (APPJ) can produce plasma plumes rich in active species, which has a wide scope of applications. From the perspective of applications, it is one of the hot issues in APPJ research to generate a diffuse plasma plume on a large scale. At present, large-scale plasma plume has been produced by noble working gases, which is more economic and valuable if it is reproduced by air used as the working gas. In this work, an APPJ with an auxiliary discharge is proposed, with which a large-scale air plasma plume with a brush shape is produced. Results indicate that the brush-shaped air plume can exist by changing voltage amplitude (Vp) in a certain range. The length and brightness of the plasma plume increase with Vp increasing. The waveforms of voltage and light emission signalindicate that the discharge can start at most once within half a cycle of applied voltage. The probability of discharge and the intensity of light emission pulse for each half a voltage cycle increase with Vp increasing, but the voltage value at the discharge moment decreases with Vp increasing. High-speed imaging study shows that the generation mechanisms of diffuse brush-shaped air plasma plumes and small-scale air plasma are similar, both originating from the temporal superposition of bifurcated normal flow light. In addition, optical emission spectra from the brush-shaped air plasma plume are utilized to study electron temperature, electron density, molecular vibrational temperature, and gas temperature. With Vp increasing, gas temperature is low and almost unchanged, while electron density, electron temperature, and molecular vibrational temperature increase. In addition, OH concentration of the plasma plume is investigated by laser-induced fluorescence, indicating that OH is uniformly distributed, and its concentration increases with the Vp increasing. All these results mentioned above are qualitatively analyzed.
      Corresponding author: Li Xue-Chen, plasmalab@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12375250, 11875121, 51977057, 11805013), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2023201012, A2020201025, A2022201036), and the Fundamental Research Funds for the Undergraduate Universities in Heilongjiang Province, China (Grant No. 2022-KYYWF-0475).
    [1]

    Naidis G V, Sosnin E A, Panarin V A, Skakun V S, Tarasenko V F 2016 IEEE Trans. Plasma Sci. 44 3249Google Scholar

    [2]

    Reuter S, Von Woedtke T, Weltmann K D 2018 J. Phys. D Appl. Phys. 51 233001Google Scholar

    [3]

    Li X C, Liu R J, Li X N, Gao K, Wu J C, Gong D D, Jia P Y 2019 Phys. Plasmas 26 023510Google Scholar

    [4]

    Chen S L, Cheng T, Chen Z Q, Chen X Y, Zhang G J 2021 Appl. Surf. Sci. 544 148956Google Scholar

    [5]

    Jia P Y, Jia H X, Ran J X, Wu K Y, Wu J C, Pang X X, Li X C 2023 Chin. Phys. B 32 085202Google Scholar

    [6]

    Gangal U, Exarhos S, Contreras T, Rich C C, Dolan K, Yang V, Frontiera R R, Bruggeman P 2022 Plasma Process. Polym. 19 e2200031Google Scholar

    [7]

    Xuan L T Q, Nguyen L N, Dao N T 2021 Nanotechnol. 33 105603

    [8]

    Ning W, Dai D, Zhang Y H 2019 Appl. Phys. Lett. 114 054104Google Scholar

    [9]

    Satale V V, Ganesh V, Dey A, Krishnamurthy S, Bhat S V 2021 Int. J. Hydrogen Energy 46 12715Google Scholar

    [10]

    Liu D W, Zhang Y Z, Xu M Y, Chen H X, Lu X P, Ostrikov K K 2020 Plasma Process. Polym. 17 e1900218Google Scholar

    [11]

    Xu Z M, Lan Y, Ma J, Shen J, Han W, Hu S H, Ye C B, Xi W H, Zhang Y D, Yang C J, Zhao X, Cheng C 2020 Plasma Sci. Technol. 22 103001Google Scholar

    [12]

    Lata S, Chakravorty S, Mitra T, Pradhan P K, Mohanty S, Patel P, Jha E, Panda P K, Verma S K, Suar M 2022 Mater. Today Bio. 13 100200Google Scholar

    [13]

    Shashurin A, Keidar M, Bronnikov S, Jurjus R A, Stepp M A 2008 Appl. Phys. Lett. 93 181501Google Scholar

    [14]

    Duan Y X, Huang C, Yu Q S 2007 Rev. Sci. Instrum. 78 015104Google Scholar

    [15]

    Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Geng J L 2016 Appl. Phys. Lett. 109 204102Google Scholar

    [16]

    Li X C, Chu J D, Jia P Y, Li Y R, Wang B, Dong L F 2018 IEEE Trans. Plasma Sci. 46 583Google Scholar

    [17]

    Urabe K, Sands B L, Ganguly B N, Sakai O 2012 Plasma Sources Sci. Technol. 21 034004Google Scholar

    [18]

    Babaeva N Y, Naidis G V, Tereshonok D V, Zhang C, Huang B D, Shao T 2021 Plasma Sources Sci. Technol. 30 115021Google Scholar

    [19]

    Chen J Y, Zhao N, Wu J C, Wu K Y, Zhang F R, Ran J X, Jia P Y, Pang X X, Li X C 2022 Chin. Phys. B 31 065205Google Scholar

    [20]

    Lu X P, Jiang Z H, Xiong Q, Tang Z, Hu X, Pan Y 2008 Appl. Phys. Lett. 92 081502Google Scholar

    [21]

    Darny T, Bauville G, Fleury M, Pasquiers S, Sousa J S 2021 Plasma Sources Sci. Technol. 30 105021Google Scholar

    [22]

    Matsusaka S 2019 Adv. Powder Technol. 30 2851Google Scholar

    [23]

    Duan Z C, Li P Z, He F, Han R Y, Ouyang J T 2021 Plasma Sources Sci. Technol. 30 025001Google Scholar

    [24]

    Li Q, Li J T, Zhu W C, Zhu X M, Pu Y K 2009 Appl. Phys. Lett. 95 141502Google Scholar

    [25]

    Liu Z Y, Xu J G, Zhu X, Liu F, Fang Z 2022 High Volt. 7 771Google Scholar

    [26]

    Cao Z, Nie Q, Bayliss D L, Walsh J L, Ren C S, Wang D Z, Kong M G 2010 Plasma Sources Sci. Technol. 19 025003Google Scholar

    [27]

    Wang S M, Zhang J L, Li G F, Wang D Z 2014 Vacuum 101 317Google Scholar

    [28]

    杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英 2021 70 155201Google Scholar

    Yang L J, Song C H, Zhao N, Zhou S, Wu J C, Jia P Y 2021 Acta Phys. Sin. 70 155201Google Scholar

    [29]

    Li Q, Takana H, Pu Y K, Nishiyama H 2011 Appl. Phys. Lett. 98 241501Google Scholar

    [30]

    Li Q, Takana H, Pu Y K, Nishiyama H 2012 Appl. Phys. Lett. 100 133501Google Scholar

    [31]

    Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Dong L F 2018 Phys. Plasmas 25 043519Google Scholar

    [32]

    Tang J, Cao W Q, Zhao W, Wang Y S, Duan Y X 2012 Phys. Plasmas 19 013501Google Scholar

    [33]

    Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C, Ren C H 2023 High Volt. 8 1161Google Scholar

    [34]

    Kolb J F, Mohamed A A H, Price R O, Swanson R J, Bowman A, Chiavarini R L, Stacey M, Schoenbach K H 2008 Appl. Phys. Lett. 92 241501Google Scholar

    [35]

    Wu S Q, Liu X Y, Mao W H, Chen W, Liu C, Zhang C H 2018 J. Appl. Phys. 124 243302Google Scholar

    [36]

    Liu K, Zhang X H, Zhou X F, Huo X M, Wang X H, Ostrikov K K 2022 J. Phys. D Appl. Phys. 55 485202Google Scholar

    [37]

    Liu K, Hu H, Lei J, Hu Y, Zheng Z 2016 Phys. Plasmas 23 123510Google Scholar

    [38]

    Lu X P, Liu D W, Xian Y B, Nie L L, Cao Y G, He G Y 2021 Phys. Plasmas 28 100501Google Scholar

    [39]

    Yang Y W, Wu J Y, Chiang M H, Wu J S 2012 IEEE Trans. Plasma Sci. 40 3003Google Scholar

    [40]

    Li X C, Wu J C, Jia B Y, Wu K Y, Kang P C, Zhang F R, Zhao N, Jia P Y, Wang L, Li S Z 2020 Appl. Phys. Lett. 117 134102Google Scholar

    [41]

    Li X C, Bao W T, Chu J D, Zhang P P, Jia P Y 2015 Plasma Sources Sci. Technol. 24 065020Google Scholar

    [42]

    Li X C, Wu K Y, Liu R J, Yang L W, Geng J L, Wang B, Jia P Y 2019 IEEE Trans. Plasma Sci. 47 1330Google Scholar

    [43]

    Li Z, Liu J, Lu X 2020 Plasma Sources Sci. Technol. 29 045015Google Scholar

    [44]

    Wu J C, Jia P Y, Ran J X, Chen J Y, Zhang F R, Wu K Y, Zhao N, Ren C H, Yin Z Q, Li X C 2021 Phys. Plasmas 28 073501Google Scholar

    [45]

    卢新培, 吴帆, 李嘉胤 2021 高电压技术 47 1831Google Scholar

    Lu X P, Wu F, Li J Y 2021 High Voltage Eng. 47 1831Google Scholar

    [46]

    Jiang J K, Gonzalvo Y A, Bruggeman P J 2020 Plasma Sources Sci. Technol. 29 045023Google Scholar

    [47]

    Darny T, Pouvesle J M, Fontane J, Joly L, Dozias S, Robert E 2017 Plasma Sources Sci. Technol. 26 105001Google Scholar

    [48]

    Lichten W 1957 J. Chem. Phys. 26 306Google Scholar

    [49]

    Akishev Y, Aponin G, Petryakov A, Trushkin N 2018 J. Phys. D Appl. Phys. 51 274006Google Scholar

    [50]

    Yuri R P 1991 Gas Discharge Physics (New York: Springer-Verlag) pp53–60

    [51]

    Lu X P, Laroussi M 2006 J. Appl. Phys. 100 063302Google Scholar

    [52]

    Wu J C, Li X C, Ran J X, Jia H X, Wu K Y, Han G X, Liu J N, Chen J Y, Pang X X, Jia P Y 2023 Plasma Process. Polym. 20 e2200188Google Scholar

    [53]

    Wu K Y, Zhao N, Niu Q M, Wu J C, Zhou S, Jia P Y, Li X C 2022 Plasma Sci. Technol. 24 055405Google Scholar

    [54]

    Belmonte T, Noël C, Gries T, Martin J, Henrion G 2015 Plasma Sources Sci. Technol. 24 064003Google Scholar

    [55]

    Li X C, Zhou S, Gao K, Ran J X, Wu K Y, Jia P Y 2022 IEEE Trans. Plasma Sci. 50 1717Google Scholar

    [56]

    Ran J X, Zhang X X, Zhang Y, Wu K Y, Zhao N, He X R, Dai X H, Liang Q H, Li X C 2023 Plasma Sci. Technol. 25 055403Google Scholar

    [57]

    Masoud N, Martus K, Figus M, Becker K 2005 Contrib. Plasma Phys. 45 32Google Scholar

    [58]

    Yue Y F, Wu F, Cheng H, Xian Y B, Liu D W, Lu X P, Pei X K 2017 J. Appl. Phys. 121 033302Google Scholar

  • 图 1  实验装置示意图

    Figure 1.  Schematic diagram of the experimental setup.

    图 2  曝光时间(texp)为0.5 s, 不同Vp下等离子体羽的照片 (a) 9.0 kV; (b) 10.8 kV; (c) 12.4 kV; (d) 14.0 kV

    Figure 2.  Images of the plasma plume under different Vp with an exposure time (texp) of 0.5 s: (a) 9.0 kV; (b) 10.8 kV; (c) 12.4 kV; (d) 14.0 kV.

    图 3  外加电压和发光信号的波形, (a)—(d)分别对应图2(a)(d)

    Figure 3.  Waveforms of applied voltage and light emission signal from the plasma plume, (a)–(d) correspond to Fig. 2(a)-(d), respectively.

    图 4  (a) VincVp的变化关系; (b) 平均发光脉冲强度和每半个电压周期内放电概率随Vp的变化关系

    Figure 4.  (a) Vinc as a function of Vp; (b) average pulse intensity and probability per voltage half cycle as functions of Vp.

    图 5  不同texp下等离子体羽的ICCD图像, Vp为14.0 kV

    Figure 5.  ICCD images of the plasma plume with varying texp, Vp is 14.0 kV.

    图 6  等离子体羽的总发射光谱

    Figure 6.  Optical emission spectrum of the plasma plume.

    图 7  谱线强度比I371 nm/I380 nm (a)与I391 nm/I380 nm (b)随Vp的变化关系

    Figure 7.  Line intensity ratios of I371 nm/I380 nm (a) and I391 nm/I380 nm (b) as functions of Vp.

    图 8  Tg (a)和Tv (b)的拟合图, Tg (c)和Tv (d)随Vp 的变化关系

    Figure 8.  A fitting process to calculate Tg (a) and Tv (b); Tg (c) and Tv (d) as functions of Vp.

    图 9  不同Vp下等离子体羽的LIF照片 (a) 9.0 kV; (b) 10.8 kV; (c) 12.4 kV; (d) 14.0 kV

    Figure 9.  Images of laser induced fluorescence under different Vp: (a) 9.0 kV; (b) 10.8 kV; (c) 12.4 kV; (d) 14.0 kV.

    Baidu
  • [1]

    Naidis G V, Sosnin E A, Panarin V A, Skakun V S, Tarasenko V F 2016 IEEE Trans. Plasma Sci. 44 3249Google Scholar

    [2]

    Reuter S, Von Woedtke T, Weltmann K D 2018 J. Phys. D Appl. Phys. 51 233001Google Scholar

    [3]

    Li X C, Liu R J, Li X N, Gao K, Wu J C, Gong D D, Jia P Y 2019 Phys. Plasmas 26 023510Google Scholar

    [4]

    Chen S L, Cheng T, Chen Z Q, Chen X Y, Zhang G J 2021 Appl. Surf. Sci. 544 148956Google Scholar

    [5]

    Jia P Y, Jia H X, Ran J X, Wu K Y, Wu J C, Pang X X, Li X C 2023 Chin. Phys. B 32 085202Google Scholar

    [6]

    Gangal U, Exarhos S, Contreras T, Rich C C, Dolan K, Yang V, Frontiera R R, Bruggeman P 2022 Plasma Process. Polym. 19 e2200031Google Scholar

    [7]

    Xuan L T Q, Nguyen L N, Dao N T 2021 Nanotechnol. 33 105603

    [8]

    Ning W, Dai D, Zhang Y H 2019 Appl. Phys. Lett. 114 054104Google Scholar

    [9]

    Satale V V, Ganesh V, Dey A, Krishnamurthy S, Bhat S V 2021 Int. J. Hydrogen Energy 46 12715Google Scholar

    [10]

    Liu D W, Zhang Y Z, Xu M Y, Chen H X, Lu X P, Ostrikov K K 2020 Plasma Process. Polym. 17 e1900218Google Scholar

    [11]

    Xu Z M, Lan Y, Ma J, Shen J, Han W, Hu S H, Ye C B, Xi W H, Zhang Y D, Yang C J, Zhao X, Cheng C 2020 Plasma Sci. Technol. 22 103001Google Scholar

    [12]

    Lata S, Chakravorty S, Mitra T, Pradhan P K, Mohanty S, Patel P, Jha E, Panda P K, Verma S K, Suar M 2022 Mater. Today Bio. 13 100200Google Scholar

    [13]

    Shashurin A, Keidar M, Bronnikov S, Jurjus R A, Stepp M A 2008 Appl. Phys. Lett. 93 181501Google Scholar

    [14]

    Duan Y X, Huang C, Yu Q S 2007 Rev. Sci. Instrum. 78 015104Google Scholar

    [15]

    Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Geng J L 2016 Appl. Phys. Lett. 109 204102Google Scholar

    [16]

    Li X C, Chu J D, Jia P Y, Li Y R, Wang B, Dong L F 2018 IEEE Trans. Plasma Sci. 46 583Google Scholar

    [17]

    Urabe K, Sands B L, Ganguly B N, Sakai O 2012 Plasma Sources Sci. Technol. 21 034004Google Scholar

    [18]

    Babaeva N Y, Naidis G V, Tereshonok D V, Zhang C, Huang B D, Shao T 2021 Plasma Sources Sci. Technol. 30 115021Google Scholar

    [19]

    Chen J Y, Zhao N, Wu J C, Wu K Y, Zhang F R, Ran J X, Jia P Y, Pang X X, Li X C 2022 Chin. Phys. B 31 065205Google Scholar

    [20]

    Lu X P, Jiang Z H, Xiong Q, Tang Z, Hu X, Pan Y 2008 Appl. Phys. Lett. 92 081502Google Scholar

    [21]

    Darny T, Bauville G, Fleury M, Pasquiers S, Sousa J S 2021 Plasma Sources Sci. Technol. 30 105021Google Scholar

    [22]

    Matsusaka S 2019 Adv. Powder Technol. 30 2851Google Scholar

    [23]

    Duan Z C, Li P Z, He F, Han R Y, Ouyang J T 2021 Plasma Sources Sci. Technol. 30 025001Google Scholar

    [24]

    Li Q, Li J T, Zhu W C, Zhu X M, Pu Y K 2009 Appl. Phys. Lett. 95 141502Google Scholar

    [25]

    Liu Z Y, Xu J G, Zhu X, Liu F, Fang Z 2022 High Volt. 7 771Google Scholar

    [26]

    Cao Z, Nie Q, Bayliss D L, Walsh J L, Ren C S, Wang D Z, Kong M G 2010 Plasma Sources Sci. Technol. 19 025003Google Scholar

    [27]

    Wang S M, Zhang J L, Li G F, Wang D Z 2014 Vacuum 101 317Google Scholar

    [28]

    杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英 2021 70 155201Google Scholar

    Yang L J, Song C H, Zhao N, Zhou S, Wu J C, Jia P Y 2021 Acta Phys. Sin. 70 155201Google Scholar

    [29]

    Li Q, Takana H, Pu Y K, Nishiyama H 2011 Appl. Phys. Lett. 98 241501Google Scholar

    [30]

    Li Q, Takana H, Pu Y K, Nishiyama H 2012 Appl. Phys. Lett. 100 133501Google Scholar

    [31]

    Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Dong L F 2018 Phys. Plasmas 25 043519Google Scholar

    [32]

    Tang J, Cao W Q, Zhao W, Wang Y S, Duan Y X 2012 Phys. Plasmas 19 013501Google Scholar

    [33]

    Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C, Ren C H 2023 High Volt. 8 1161Google Scholar

    [34]

    Kolb J F, Mohamed A A H, Price R O, Swanson R J, Bowman A, Chiavarini R L, Stacey M, Schoenbach K H 2008 Appl. Phys. Lett. 92 241501Google Scholar

    [35]

    Wu S Q, Liu X Y, Mao W H, Chen W, Liu C, Zhang C H 2018 J. Appl. Phys. 124 243302Google Scholar

    [36]

    Liu K, Zhang X H, Zhou X F, Huo X M, Wang X H, Ostrikov K K 2022 J. Phys. D Appl. Phys. 55 485202Google Scholar

    [37]

    Liu K, Hu H, Lei J, Hu Y, Zheng Z 2016 Phys. Plasmas 23 123510Google Scholar

    [38]

    Lu X P, Liu D W, Xian Y B, Nie L L, Cao Y G, He G Y 2021 Phys. Plasmas 28 100501Google Scholar

    [39]

    Yang Y W, Wu J Y, Chiang M H, Wu J S 2012 IEEE Trans. Plasma Sci. 40 3003Google Scholar

    [40]

    Li X C, Wu J C, Jia B Y, Wu K Y, Kang P C, Zhang F R, Zhao N, Jia P Y, Wang L, Li S Z 2020 Appl. Phys. Lett. 117 134102Google Scholar

    [41]

    Li X C, Bao W T, Chu J D, Zhang P P, Jia P Y 2015 Plasma Sources Sci. Technol. 24 065020Google Scholar

    [42]

    Li X C, Wu K Y, Liu R J, Yang L W, Geng J L, Wang B, Jia P Y 2019 IEEE Trans. Plasma Sci. 47 1330Google Scholar

    [43]

    Li Z, Liu J, Lu X 2020 Plasma Sources Sci. Technol. 29 045015Google Scholar

    [44]

    Wu J C, Jia P Y, Ran J X, Chen J Y, Zhang F R, Wu K Y, Zhao N, Ren C H, Yin Z Q, Li X C 2021 Phys. Plasmas 28 073501Google Scholar

    [45]

    卢新培, 吴帆, 李嘉胤 2021 高电压技术 47 1831Google Scholar

    Lu X P, Wu F, Li J Y 2021 High Voltage Eng. 47 1831Google Scholar

    [46]

    Jiang J K, Gonzalvo Y A, Bruggeman P J 2020 Plasma Sources Sci. Technol. 29 045023Google Scholar

    [47]

    Darny T, Pouvesle J M, Fontane J, Joly L, Dozias S, Robert E 2017 Plasma Sources Sci. Technol. 26 105001Google Scholar

    [48]

    Lichten W 1957 J. Chem. Phys. 26 306Google Scholar

    [49]

    Akishev Y, Aponin G, Petryakov A, Trushkin N 2018 J. Phys. D Appl. Phys. 51 274006Google Scholar

    [50]

    Yuri R P 1991 Gas Discharge Physics (New York: Springer-Verlag) pp53–60

    [51]

    Lu X P, Laroussi M 2006 J. Appl. Phys. 100 063302Google Scholar

    [52]

    Wu J C, Li X C, Ran J X, Jia H X, Wu K Y, Han G X, Liu J N, Chen J Y, Pang X X, Jia P Y 2023 Plasma Process. Polym. 20 e2200188Google Scholar

    [53]

    Wu K Y, Zhao N, Niu Q M, Wu J C, Zhou S, Jia P Y, Li X C 2022 Plasma Sci. Technol. 24 055405Google Scholar

    [54]

    Belmonte T, Noël C, Gries T, Martin J, Henrion G 2015 Plasma Sources Sci. Technol. 24 064003Google Scholar

    [55]

    Li X C, Zhou S, Gao K, Ran J X, Wu K Y, Jia P Y 2022 IEEE Trans. Plasma Sci. 50 1717Google Scholar

    [56]

    Ran J X, Zhang X X, Zhang Y, Wu K Y, Zhao N, He X R, Dai X H, Liang Q H, Li X C 2023 Plasma Sci. Technol. 25 055403Google Scholar

    [57]

    Masoud N, Martus K, Figus M, Becker K 2005 Contrib. Plasma Phys. 45 32Google Scholar

    [58]

    Yue Y F, Wu F, Cheng H, Xian Y B, Liu D W, Lu X P, Pei X K 2017 J. Appl. Phys. 121 033302Google Scholar

  • [1] Qi Liang-Wen, Du Man-Qiang, Wen Xiao-Dong, Song Jian, Yan Hui-Jie. Dynamics and impurity spectral characteristics of coaxial gun discharge plasma. Acta Physica Sinica, 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] Hu Yang, Luo Jing-Yi, Cai Yu-Yan, Lu Xin-Pei. Effect of external magnetic field on helix plasma plume. Acta Physica Sinica, 2023, 72(13): 130501. doi: 10.7498/aps.72.20222442
    [3] Shui Min, Xi Tao, Yan Yong-Hong, Yu Ming-Hai, Chu Gen-Bai, Zhu Bin, He Wei-Hua, Zhao Yong-Qiang, Wang Shao-Yi, Fan Wei, Lu Feng, Yang Lei, Xin Jian-Ting, Zhou Wei-Min. Laser-plasma jet driven sub-millimeter diameter aluminum flyer and its gesture diagnosis. Acta Physica Sinica, 2022, 71(9): 095201. doi: 10.7498/aps.71.20212136
    [4] Zhang Ya-Rong, Han Qian-Han, Guo Ying, Zhang Jing, Shi Jian-Jun. Discharge characteristics and mechanism of plasma plume generated by atmospheric pulsed discharge. Acta Physica Sinica, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [5] Wang Zhen-Xing, Cao Zhi-Yuan, Li Rui, Chen Feng, Sun Li-Qiong, Geng Ying-San, Wang Jian-Hua. Three-dimensional hybrid simulation of single cathode spot vacuum arc plasma jet under axial magnetic field. Acta Physica Sinica, 2021, 70(5): 055201. doi: 10.7498/aps.70.20201701
    [6] Yang Li-Jun, Song Cai-Hong, Zhao Na, Zhou Shuai, Wu Jia-Cun, Jia Peng-Ying. Discharge characteristics of argon brush plasma plume operated at atmospheric pressure. Acta Physica Sinica, 2021, 70(15): 155201. doi: 10.7498/aps.70.20202091
    [7] Zhang Gai-Ling, Hua Yue, Hao Ze-Yu, Ren Chun-Sheng. Experimental investigation of plasma parameters in 13.56 MHz/2 MHz cylindrical inductively coupled plasma. Acta Physica Sinica, 2019, 68(10): 105202. doi: 10.7498/aps.68.20190071
    [8] Huang Jun, Chen Wei, Li Hui, Wang Peng-Ye, Yang Si-Ze. Inactivation of Hela cancer cells by an atmospheric pressure cold plasma jet. Acta Physica Sinica, 2013, 62(6): 065201. doi: 10.7498/aps.62.065201
    [9] Du Yong-Quan, Liu Wen-Yao, Zhu Ai-Min, Li Xiao-Song, Zhao Tian-Liang, Liu Yong-Xin, Gao Fei, Xu Yong, Wang You-Nian. Phase resolved optical emission spectroscopy of dual frequency capacitively coupled plasma. Acta Physica Sinica, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [10] Chen Wei, Huang Jun, Li Hui, Lü Guo-Hua, Wang Xing-Quan, Zhang Guo-Ping, Wang Peng-Ye, Yang Si-Ze. Inactivation of A549 cancer cells by a helium-oxygen plasma needle. Acta Physica Sinica, 2012, 61(18): 185203. doi: 10.7498/aps.61.185203
    [11] Gao Zhu-Xiu, Feng Chun-Hua, Yang Xuan-Zong, Huang Jian-Guo, Han Jian-Wei. Research on plasma axial velocity generated by small debris accelerator coaxial gun. Acta Physica Sinica, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [12] Yu Liang, Li Xiao-Dong, Wang Yu, Ni Ming-Jiang, Yan Jian-Hua, Tu Xin. Characterization of atmospheric pressuredc gliding arc plasma. Acta Physica Sinica, 2011, 60(1): 015101. doi: 10.7498/aps.60.015101
    [13] Li Xue-Chen, Yuan Ning, Jia Peng-Ying, Chang Yuan-Yuan, Ji Ya-Fei. Characteristics of atmospheric pressure air uniform discharge generated by a plasma needle. Acta Physica Sinica, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [14] Pu Yu-Dong, Yang Jia-Min, Jin Feng-Tao, Zhang Lu, Ding Yong-Kun. Characteristics of emission spectroscopyof radiatively heated Al plasma. Acta Physica Sinica, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [15] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [16] Zhu Zhu-Qing, Wang Xiao-Lei. Experimental study on emission spectra of air plasma induced by femtosecond laser pulses. Acta Physica Sinica, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [17] Liu Li-Ying, Zhang Jia-Liang, Guo Qing-Chao, Wang De-Zhen. Diagnostics of the atmospheric pressure plasma jets for plasma enhanced chemical vapor deposition of polycrystalline silicon thin film. Acta Physica Sinica, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [18] Yi You-Gen, Tang Jing-Wu, Huang Du-Zhi. Theoretical calculations of X-ray spectra of Au plasma. Acta Physica Sinica, 2010, 59(11): 7769-7774. doi: 10.7498/aps.59.7769
    [19] Niu Tian-Ye, Cao Jin-Xiang, Liu Lei, Liu Jin-Ying, Wang Yan, Wang Liang, Lü You, Wang Ge, Zhu Ying. The techniques of single probe and emission spectroscopy diagnostics in low temperature argon plasmas. Acta Physica Sinica, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [20] Huang Song, Xin Yu, NingZhao-Yuan. Studies on C22 radical by optical emission spectroscopy in an induc tively-coupled CF44/CH44 plasma. Acta Physica Sinica, 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
Metrics
  • Abstract views:  1978
  • PDF Downloads:  59
  • Cited By: 0
Publishing process
  • Received Date:  10 December 2023
  • Accepted Date:  05 February 2024
  • Available Online:  20 February 2024
  • Published Online:  20 April 2024

/

返回文章
返回
Baidu
map