-
Phase change microcapsule suspension is a new type of heat-storage and heat-transfer functional fluid. Owing to the lack of understanding of flow-solid interaction, there exists a difference in research result of the heat transfer performance of suspension fluid. Therefore, the arbitrary Lagrangian-Euler method is used to simulate the flow-solid transfer characteristics of phase-change microcapsules in the liquid-cooled microchannel. Furthermore, the comparison of heat-transfer between particle and phase-change capsules is conducted. The influences of the position, shape, and number of capsules on the inhibition of the wall temperature rise are investigated. The results show that the wall-temperature-rise inhibition mainly occurs in the upstream area of the capsules. The phase change of capsules can reduce the wall temperature rise. On the other hand, the spin movement is faster when the capsule is closer to the wall, and the heat transfer is enhanced. As a result, the inhibitory effect on the wall temperature rise becomes stronger, especially near the heating surface. The circular capsules spin movement is faster and the inhibition performance is better than the ellipse. With the capsules number increasing, the wall temperature inhibition effect also gradually strengthens.
-
Keywords:
- phase change microcapsule /
- microchannel liquid cooling /
- fluid-particle interaction /
- wall-temperature inhibition
[1] Zhang Y, Ding B, Zhao D Y, Zhao S, Gong L 2023 Int. J. Heat Mass Transf. 201 123566
Google Scholar
[2] Xiu L 2019 IEEE Solid-State Circuits Magazine 11 39
Google Scholar
[3] Zhang Q, Deng K, Wilkens L, Reith H, Nielsch K 2022 Nat. Electron. 5 333
Google Scholar
[4] Ding B, Feng W C, Fang J, Li S Z, Gong L 2022 Int. J. Heat Mass Transf. 184 122272
Google Scholar
[5] Ding B, Feng W C, Mu M F, Gong L, Li L 2023 Int. J. Heat Mass Transf. 203 123773
Google Scholar
[6] 黄豪杰, 钱吉裕, 魏涛 2022 中国电子科学研究院学报 17 842
Google Scholar
Huang H J, Qian J Y, Wei T 2022 J. Chin. Acad. Electron. Sci. 17 842
Google Scholar
[7] Vinoth R, Sachuthananthan B 2021 Int. Commun. Heat Mass Transf. 123 105194
Google Scholar
[8] Hou T, Chen Y 2020 Chem. Eng. Process 153 107931
Google Scholar
[9] Zhang F, Wu B, Du B 2022 Int. J. Therm. Sci. 172 107357
Google Scholar
[10] Alnaimat F, Varghese D, Mathew B 2022 Int. J. Thermo. fluids 16 100213
Google Scholar
[11] Roumpea E, Kovalchuk N M, Chinaud M, Nowak E, Simmons M J H, Angeli P 2019 Chem. Eng. Sci. 195 507
Google Scholar
[12] Liang C P, Ture F, Dai Y J, Wang R Z, Ge T S 2021 Energy Build. 231 110622
Google Scholar
[13] Chen Z, Qian P, Huang Z, Zhang W, Liu M 2023 Int. J. Therm. Sci. 183 107840
Google Scholar
[14] Sarafraz M M, Arjomandi M 2018 Appl. Therm. Eng. 137 700
Google Scholar
[15] Martínez V A, Vasco D A, García-Herrera C M, Ortega-Aguilera R 2019 Appl. Therm. Eng. 161 114130
Google Scholar
[16] 刘中淼, 孙其诚, 宋世雄, 史庆藩 2014 63 034702
Google Scholar
Liu Z M, Sun Q C, Song S X, Shi Q P 2014 Acta Phys. Sin. 63 034702
Google Scholar
[17] Hetsroni G, Mosyak A, Pogrebnyak E 2002 Int. J. Multiph. Flow 28 1873
Google Scholar
[18] Hashemi Z, Abouali O, Kamali R 2013 Int. J. Heat Mass Transf. 65 235
Google Scholar
[19] Liu C, Tang S, Dong Y 2017 Appl. Math Mech. Engl. 38 1149
Google Scholar
[20] 段总样, 赵云华, 徐璋 2021 力学学报 53 2656
Google Scholar
Duan Z Y, Zhao Y H, Xu Z 2021 Chin. J. Theor. Appl. Mech. 53 2656
Google Scholar
[21] 赵维维 2019 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Zhao W W 2019 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)
[22] 崔智文, 王泽, 蒋新宇, 赵立豪 2022 力学进展 52 623
Google Scholar
Cui Z W, Wang Z, Jiang X Y, Zhao L H 2022 Adv. Mech. 52 623
Google Scholar
[23] Rao Y, Dammel F, Stephan P, Lin G 2007 Heat Mass Transf. 44 175
Google Scholar
[24] 杨杰, 王艳 2020 农业装备与车辆工程 58 141
Google Scholar
Yang J, Wang Y 2020 Agric. Equip. Veh. Eng. 58 141
Google Scholar
-
图 12 胶囊位置的影响 (a) 胶囊在1.7 ms时
$ \Delta {T}_{{\rm{w}}} $ ; (b) 胶囊在2.7 ms时$ \Delta {T}_{{\rm{w}}} $ ; (c) 胶囊在6.6 ms时$ \Delta {T}_{{\rm{w}}} $ ; (d) 胶囊迁移及自旋Figure 12. Effect of microcapsule position: (a)
$ \Delta $ Tw in 1.7 ms; (b)$ {\Delta } $ Tw in 2.7 ms; (c)$ \Delta $ Tw in 6.6 ms; (d) phase change microcapsule migration and spin.表 1 基液及相变胶囊、普通颗粒的物性参数
Table 1. Thermophysical properties of the base fluid and particle.
材料 ρ/(kg·m–3) Cp/(J·kg–1·K–1) k/(W·m–1·K–1) μ/(10–3 Pa·s) hsf/(kJ·kg–1) 水 998.2 4189 0.599 1.005 — 相变胶囊 1094 (1)式 0.1644 — 241 普通颗粒 1094 1893.04 0.1644 — — -
[1] Zhang Y, Ding B, Zhao D Y, Zhao S, Gong L 2023 Int. J. Heat Mass Transf. 201 123566
Google Scholar
[2] Xiu L 2019 IEEE Solid-State Circuits Magazine 11 39
Google Scholar
[3] Zhang Q, Deng K, Wilkens L, Reith H, Nielsch K 2022 Nat. Electron. 5 333
Google Scholar
[4] Ding B, Feng W C, Fang J, Li S Z, Gong L 2022 Int. J. Heat Mass Transf. 184 122272
Google Scholar
[5] Ding B, Feng W C, Mu M F, Gong L, Li L 2023 Int. J. Heat Mass Transf. 203 123773
Google Scholar
[6] 黄豪杰, 钱吉裕, 魏涛 2022 中国电子科学研究院学报 17 842
Google Scholar
Huang H J, Qian J Y, Wei T 2022 J. Chin. Acad. Electron. Sci. 17 842
Google Scholar
[7] Vinoth R, Sachuthananthan B 2021 Int. Commun. Heat Mass Transf. 123 105194
Google Scholar
[8] Hou T, Chen Y 2020 Chem. Eng. Process 153 107931
Google Scholar
[9] Zhang F, Wu B, Du B 2022 Int. J. Therm. Sci. 172 107357
Google Scholar
[10] Alnaimat F, Varghese D, Mathew B 2022 Int. J. Thermo. fluids 16 100213
Google Scholar
[11] Roumpea E, Kovalchuk N M, Chinaud M, Nowak E, Simmons M J H, Angeli P 2019 Chem. Eng. Sci. 195 507
Google Scholar
[12] Liang C P, Ture F, Dai Y J, Wang R Z, Ge T S 2021 Energy Build. 231 110622
Google Scholar
[13] Chen Z, Qian P, Huang Z, Zhang W, Liu M 2023 Int. J. Therm. Sci. 183 107840
Google Scholar
[14] Sarafraz M M, Arjomandi M 2018 Appl. Therm. Eng. 137 700
Google Scholar
[15] Martínez V A, Vasco D A, García-Herrera C M, Ortega-Aguilera R 2019 Appl. Therm. Eng. 161 114130
Google Scholar
[16] 刘中淼, 孙其诚, 宋世雄, 史庆藩 2014 63 034702
Google Scholar
Liu Z M, Sun Q C, Song S X, Shi Q P 2014 Acta Phys. Sin. 63 034702
Google Scholar
[17] Hetsroni G, Mosyak A, Pogrebnyak E 2002 Int. J. Multiph. Flow 28 1873
Google Scholar
[18] Hashemi Z, Abouali O, Kamali R 2013 Int. J. Heat Mass Transf. 65 235
Google Scholar
[19] Liu C, Tang S, Dong Y 2017 Appl. Math Mech. Engl. 38 1149
Google Scholar
[20] 段总样, 赵云华, 徐璋 2021 力学学报 53 2656
Google Scholar
Duan Z Y, Zhao Y H, Xu Z 2021 Chin. J. Theor. Appl. Mech. 53 2656
Google Scholar
[21] 赵维维 2019 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Zhao W W 2019 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)
[22] 崔智文, 王泽, 蒋新宇, 赵立豪 2022 力学进展 52 623
Google Scholar
Cui Z W, Wang Z, Jiang X Y, Zhao L H 2022 Adv. Mech. 52 623
Google Scholar
[23] Rao Y, Dammel F, Stephan P, Lin G 2007 Heat Mass Transf. 44 175
Google Scholar
[24] 杨杰, 王艳 2020 农业装备与车辆工程 58 141
Google Scholar
Yang J, Wang Y 2020 Agric. Equip. Veh. Eng. 58 141
Google Scholar
Catalog
Metrics
- Abstract views: 4037
- PDF Downloads: 138
- Cited By: 0