搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变温壁驱动腔内热蠕流特性的离散气体动理学格式模拟

刘赞奇 罗源 翁万良 何清 陶实

引用本文:
Citation:

变温壁驱动腔内热蠕流特性的离散气体动理学格式模拟

刘赞奇, 罗源, 翁万良, 何清, 陶实

Discrete gas kinetic simulation of characteristics of variable temperature wall driven thermal creep flow in cavity

LIU Zanqi, LUO Yuan, WENG Wangliang, HE Qing, TAO Shi
PDF
HTML
导出引用
  • 为考察壁面温度变化对受限空间内稀薄气体流动与传热特性的影响, 采用离散气体动理学格式(DUGKS)模拟研究了方腔内的热蠕流动. 腔体四周为静止漫反射恒温壁面, 上、下壁温度则随时间周期性变化. 模拟的参数范围如下: 变温频率0.5 ≤ St ≤ 5.0、变温振幅0.1 ≤ Ah ≤ 0.8和克努森数0.01 ≤ Kn ≤ 10. 数值结果表明: 方腔内气体流动与传热特性呈现周期性变化, 且不会出现反傅里叶热传递. 变温频率、振幅和克努森数的提高均可增强腔内热蠕流动强度, 且变温壁面附近速度滑移和温度跳跃增大. StKn的增大导致出现传热滞后现象, 壁面换热能力减弱. 特别地, 当St = 0.5较小时腔内观察到复杂涡流结构; St = 5.0时气体由变温壁面向腔体水平中心线均匀流动, 涡流消失的同时左、右壁面中点附近由吸热区转变为放热区. Ah增大时腔内温度场和速度场结构变化不大, 而壁面传热强度减小.
    In order to examine the influence of wall temperature change on the flow and heat transfer properties of rarefied gas in restricted space, the discrete unified gas kinetic scheme (DUGKS) is used to simulate the thermal creep flows in a square cavity. All the boundaries of the cavity are stationary diffuse reflection walls. The temperature of left wall and right wall are lower, and the temperature of the upper wall and the lower wall are both subjected to periodic variation. The simulation parameters considered in the present work are set as follows: the Knudsen number Kn is in a range 0.01–10, temperature change frequency St in a range of 0.5–5, and temperature change amplitude Ah in a range of 0.1–0.8. The results indicate that the velocity field and temperature field in the cavity exhibit periodic variations. No inverse Fourier heat transfer phenomenon is observed within the parameter ranges studied. The intensity of the thermal creep flow can be increased by increasing the frequency, temperature, and the Knudsen number. This can also raise the temperature jump and velocity slip close to the temperature change walls. Heat transfer lag and a reduction in the heat transfer capability of the wall are caused by increasing St and Kn. When St is small, say, St = 0.5, a complex vortex structure is seen in the cavity. As the value of St rises to 5, the vortex disappears, the gas travels from the variable temperature wall to the horizontal centerline of cavity, and the region close to the middle of the left wall and right wall changes from an endothermic zone to an exothermic zone. Furthermore, the temperature field and velocity field inside the cavity hardly change, but the degree of heat transfer on the wall decreases with the increase of Ah. The main results are shown in the figure attached below. This work provides helpful recommendations for designing the MEMS devices by using pulsed heating.
  • 图 1  变温壁面驱动方腔流动示意图

    Fig. 1.  Schematic diagram of the flow of a variable temperature wall driven cavity.

    图 2  Kn = 0.1时的腔内温度云图和速度场流线结果对比 (a)文献[42]结果; (b)本文结果

    Fig. 2.  Comparison of the temperature contour and velocity field streamlines in the cavity at Kn = 0.1: (a) Results of Ref. [42]; (b) the results of this work.

    图 3  通过左侧一级主涡中心的水平和竖直线上的UV速度分布

    Fig. 3.  U and V velocity distribution in horizontal and vertical lines through the center of the primary vortex on the left.

    图 4  Kn = 1, Ah = 0.5, t = 0时, 不同St下方腔内温度场和热流线 (a) St = 0.5; (b) St = 1.0; (c) St = 2.0; (d) St = 5.0

    Fig. 4.  Temperature field and thermal flow lines in different cavities under different St when Kn = 1, Ah = 0.5 and t = 0: (a) St = 0.5; (b) St = 1.0; (c) St = 2.0; (d) St = 5.0.

    图 5  Kn = 1, Ah = 0.5, t = 0时不同频率St下中心线上的温度分布 (a)竖直中心线X/L = 0.5; (b): 水平中心线Y/L = 0.5

    Fig. 5.  Temperature distribution on the centerline at different frequencies St when Kn = 1, Ah = 0.5 and t = 0: (a) Vertical centerline X/L = 0.5; (b) horizontal centerline Y/L = 0.5.

    图 6  Kn = 1, Ah = 0.5, t = 0时不同频率St下方腔内速度云图和流线 (a) St = 0.5; (b) St = 1.0; (c) St = 2.0; (d) St = 5.0

    Fig. 6.  Intracavity velocity contours and streamlines below St at different frequencies when Kn = 1, Ah = 0.5 and t = 0: (a) St = 0.5; (b) St = 1.0; (c) St = 2.0; (d) St = 5.0.

    图 7  Kn = 1, Ah = 0.5, t = 0时不同St时左、上壁面处气体温度T、努塞尔数Nu和速度U分布

    Fig. 7.  Distributions of gas temperature T, Nusselt number Nu and velocity U on the left and upper walls at different St when Kn = 1, Ah = 0.5 and t = 0.

    图 8  Ah = 0.5, t = 0时不同参数在不同StKn下的变化 (a)左壁面中点温度Tcy; (b)上壁面中点温度Tcx; (c)左壁面中点努塞尔数Nucy; (d)左壁面下半部分平均速度$ {\overline{U}}_{{\mathrm{z}}{\mathrm{x}}} $

    Fig. 8.  Variations of different parameters under different St and Kn when Ah = 0.5 and t = 0: (a) Temperature of the midpoint of the left wall Tcy; (b) temperature of the midpoint of the upper wall Tcx; (c) Nussel number of the midpoint of the left wall Nucy; (d) the average velocity of the lower half of the left wall $ {\overline{U}}_{{\mathrm{z}}{\mathrm{x}}} $ .

    图 9  不同StKn下, 壁面平均努塞尔数$\overline{Nu} $的时间历程及$\overline{Nu} $的极差$ {\left(\Delta\overline{Nu}\right)}_{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}} $ (a), (c) Y = 0, 下壁面; (b), (d) X = 0, 左壁面

    Fig. 9.  The time history of the average Nussel number $\overline{Nu} $and the range $ {\left(\Delta\overline{Nu}\right)}_{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}} $of $\overline{Nu} $on the wall under different St and Kn: (a), (c) Lower wall surface, Y = 0; (b), (d) left wall, X = 0.

    图 10  Ah = 0.2, Kn = 1, St = 1.0, t = 0时方腔内的温度场和热流线(a)、速度场和流线(b)

    Fig. 10.  Temperature field and thermal streamlines (a), velocity field and streamlines (b) in a square cavity at Kn = 1, St = 1.0, Ah = 0.2 and t = 0.

    图 11  Kn = 1, St = 1.0, t = 0时不同振幅Ah的中心线上温度分布 (a)竖直中心线X/L = 0.5; (b)水平中心线Y/L = 0.5

    Fig. 11.  Temperature distribution on the centerline of Ah with different amplitudes when Kn = 1, St = 1.0 and t = 0: (a) Vertical centerline X/L = 0.5; (b) horizontal centerline Y/L = 0.5.

    图 12  Kn = 1, St = 1.0, t = 0时不同Ah时左、上壁面处气体温度T, 努塞尔数Nu和速度U分布

    Fig. 12.  Distribution of gas temperature T, Nusselt number Nu and velocity U on the left and upper wall surfaces at different Ah when Kn = 1, St = 1.0 and t = 0.

    图 13  St = 1.0, t = 0时, 不同参数在不同AhKn下的变化 (a)左壁面中点温度Tcy; (b)上壁面中点温度Tcx; (c)左壁面中点努塞尔数Nucy; (d)左下半壁面平均速度$ {\overline{U}}_{{\mathrm{z}}{\mathrm{x}}} $

    Fig. 13.  Variations of different parameters under different Ah and Kn when St = 1.0 and t = 0: (a) The midpoint temperature of the left wall Tcy; (b) temperature of the midpoint of the upper wall Tcx; (c) Nusselt number of the left wall midpoint Nucy; (d) the average velocity of the lower left half of the wall $ {\overline{U}}_{{\mathrm{z}}{\mathrm{x}}} $.

    图 14  Kn = 10, St = 1.0, t = 0时, 不同Ah下方腔内温度云图和流线 (a) Ah = 0.6; (b) Ah = 0.7; (c) Ah = 0.8

    Fig. 14.  Temperature cloud maps and streamlines in the cavity with different Ah values at Kn = 10, St = 1.0, and t = 0: (a) Ah = 0.6; (b) Ah = 0.7; (c) Ah = 0.8.

    图 15  St = 1.0时不同AhKn下, 壁面平均努塞尔数$\overline{Nu} $的时间历程及$\overline{Nu} $的极差$ {\left(\Delta\overline{Nu}\right)}_{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}} $. (a), (c) X = 0, 左壁面; (b), (d) Y= 0, 下壁面

    Fig. 15.  The time history of the average Nussel number $\overline{Nu} $ and the range $ {\left(\Delta\overline{Nu}\right)}_{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}} $of $\overline{Nu} $ on the wall under different Ah and Kn when St = 1.0: (a), (c) Left wall, X = 0; (b), (d) lower wall surface, Y= 0.

    Baidu
  • [1]

    沈青 2006 力学进展 36 142Google Scholar

    Shen Q 2006 Adv. Mech. 36 142Google Scholar

    [2]

    Frangi A, Frezzotti A, Lorenzani S 2007 Comput. Struct. 85 810Google Scholar

    [3]

    梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿 2020 69 224701

    Mei T, Chen Z X, Yang L, Zhu H M, Miao R C Acta Phys. Sin. 69 224701

    [4]

    Ramadan K M, Qisieh O, Tlili I 2022 Proc. Inst. Mech. Eng. Part C 236 5033Google Scholar

    [5]

    Mousivand M, Roohi E 2022 Phys. Fluids 34 052002Google Scholar

    [6]

    Lan J, Xie J, Ye J, Peng W Z, Jiao X Y 2022 Int. J. Hydrogen Energy 47 19206Google Scholar

    [7]

    韩峰, 王晓伟, 张文青, 张世伟, 张志军 2023 真空科学与技术学报 43 238

    Hang F, Wang X W, Zhang W Q, Zhang S W, Zhang Z J 2023 J. Vac. Sci. Technol. 43 238

    [8]

    王晓伟, 张志军, 张文青, 苏天一, 张世伟 2020真空与低温 26 73

    Wang X W, Zhang Z J, Zhang W Q, Su T Y, Zhang S W 2020 Vac. Cryogen

    [9]

    Wu L, Zhang Y H, Li Z H 2017 Sci. Sin. phys. Mech. As. 47 070004Google Scholar

    [10]

    Tsimpoukis A, Vasileiadis N, Tatsios G, Valougeorgis D 2019 Phys. Fluids 31 067108Google Scholar

    [11]

    Taassob A, Kamali R, Bordbar A 2018 Vacuum 151 197Google Scholar

    [12]

    Nabapure D 2021 J. Comput. Sci. Neth. 49 101276.Google Scholar

    [13]

    Wu L, Reese J M, Zhang Y 2014 J. Fluid Mech. 748 350Google Scholar

    [14]

    Ogata Y, Kawaguchi T 2011 J. Fluid Sci. Technol. 6 215Google Scholar

    [15]

    Palharini R C, Scanlon T J, White C 2018 Comput. Fluids 165 173Google Scholar

    [16]

    Yang W Q, Tang S, Yang H 2019 Appl. Sci. 9 2733Google Scholar

    [17]

    单小东, 王沫然 2013 工程热 34 2159

    Shan X D, Wang M R 2013 J. Eng. Thermophys. 34 2159

    [18]

    张帅, 方蜀州, 许阳 2021 推进技术 42 2002

    Zhang S, Fang S Z, Xu Y 2021 J. Propul. Technol. 42 2002

    [19]

    Zhang J, Yao S Q, Fei F, Ghalambaz M, Wen D S 2020 Phys. Fluids 32 102001Google Scholar

    [20]

    Moghadam E Y, Roohi E, Esfahani J A 2014 Vacuum 109 333Google Scholar

    [21]

    Yamaguchi H, Perrier P, Ho M T, Méolans J G, Niimi T, Graur I 2016 J. Fluid Mech. 795 690Google Scholar

    [22]

    Barbera E, Brini F 2018 Europhys. Lett. 120 34001

    [23]

    Akhlaghi H, Roohi E, Stefanov S 2018 Sci. Rep. 8 13533Google Scholar

    [24]

    Han Y L 2010 Fluid Dyn. Res. 42 045505Google Scholar

    [25]

    Zhu M B, Roohi E, Ebrahimi A 2023 Phys. Fluids 35 052012Google Scholar

    [26]

    Roohi E, Shahabi V, Bagherzadeh A 2018 Int. J. Therm. Sci. 125 381Google Scholar

    [27]

    Wang P, Zhu L H, Su W, Wu L, Zhang Y H 2018 Phys. Rev. E 97 043103Google Scholar

    [28]

    Zhu L H, Guo Z L, Xu K 2016 Comput. Fluids 127 211Google Scholar

    [29]

    Wang X W, Su T Y, Zhang W Q, Zhang Z J, Zhang S W 2020 Microsyst. Nanoeng. 6 26Google Scholar

    [30]

    张贝豪, 郑林 2020 69 164401Google Scholar

    Zhang B H, Zheng L 2020 Acta Phys. Sin. 69 164401Google Scholar

    [31]

    Ou Y, Qu F, Wang G Y, Nie M Y, Li Z G, Ou W, Xie C Q 2016 Appl. Phys. Lett. 109 023512Google Scholar

    [32]

    万启坤, 张月, 郭照立 2023 计算物理 40 653

    Wan Q K, Zhang Y, Guo Z L 2023 J. Chin. J. Comput. Phys. 40 653

    [33]

    Kalempa D, Sharipov F, Silva J C 2019 Vacuum 159 82Google Scholar

    [34]

    Bargatin I, Kozinsky I, Roukes M L 2007 Appl. Phys. Lett. 90 093116Google Scholar

    [35]

    Ilic B, Yang Y, Aubin K, Reichenbach R, Krylov S, Craighead H G 2005 Nano Lett. 5 925Google Scholar

    [36]

    Juvé V, Crut A, Maioli P, Pellarin M, Broyer M, Del Fatti N, Vallée F 2010 Nano Lett. 10 1853Google Scholar

    [37]

    Guo Z L, Wang R J, Xu K 2015 Phys. Rev. E 91 033313Google Scholar

    [38]

    孙喜明, 姚朝晖, 杨京龙 2002 51 1942Google Scholar

    Sun X M, Yao Z H, Yang J L 2002 Acta Phys. Sin. 51 1942Google Scholar

    [39]

    孙佳坤, 林传栋, 苏咸利, 谭志城, 陈亚楼, 明平剑 2024 73 110504Google Scholar

    Sun J K, Lin C D, Su X L, Tan Z C, Chen Y L, Ming P J 2024 Acta Phys. Sin. 73 110504Google Scholar

    [40]

    Huang J C, Xu K, Yu P 2013 Commun. Comput. Phys. 14 1147Google Scholar

    [41]

    Wang Y, Zhong C W, Liu S 2019 Phys. Rev. E 100 063310Google Scholar

    [42]

    Zhu L H, Chen S Z, Guo Z L 2017 Comput. Phys. Commun. 213 155Google Scholar

    [43]

    Vargas M, Tatsios G, Valougeorgis D, Stefanov S 2014 Phys. Fluids 26 057101Google Scholar

  • [1] 罗仕超, 吴里银, 胡守超, 龚红明, 吕明磊, 孔小平. 壁面催化对高温非平衡流场磁控效果影响分析.  , doi: 10.7498/aps.74.20241307
    [2] 胡玉发, 易仕和, 刘小林, 徐席旺, 张震, 张臻. 壁面渗透气膜工质对圆锥高超声速边界层稳定性的影响.  , doi: 10.7498/aps.73.20240369
    [3] 郭义丰, 王智彬, 贾莉斯, 莫松平, 陈颖. 液冷微通道内相变微胶囊的壁面温升抑制特性数值模拟.  , doi: 10.7498/aps.72.20222400
    [4] 陈蒋力, 陈少强, 任峰, 胡海豹. 基于壁面压力反馈的圆柱绕流减阻智能控制.  , doi: 10.7498/aps.71.20212171
    [5] 陆昌根, 沈露予, 朱晓清. 压力梯度对壁面局部吹吸边界层感受性的影响研究.  , doi: 10.7498/aps.68.20190684
    [6] 张烨, 张冉, 常青, 李桦. 壁面效应对纳米尺度气体流动的影响规律研究.  , doi: 10.7498/aps.68.20190248
    [7] 王汝佳, 吴士平, 陈伟. 热粘弹波在变温非均匀合金熔体中的传播.  , doi: 10.7498/aps.68.20181923
    [8] 张云刚, 刘如慧, 汪梅婷, 王允轩, 李占勋, 童凯. 漫反射立方腔单次反射平均光程的理论和实验研究.  , doi: 10.7498/aps.67.20171808
    [9] 常松涛, 田棋杰, 何锋赟, 余毅, 李周. 基于球面反射温阑的红外探测器变f数设计.  , doi: 10.7498/aps.66.150701
    [10] 陆昌根, 沈露予. 壁面局部吹吸边界层感受性的数值研究.  , doi: 10.7498/aps.64.224702
    [11] 陈蓥, 付世晓, 许玉旺, 周青, 范迪夏. 均匀流中近壁面垂直流向振荡圆柱水动力特性研究.  , doi: 10.7498/aps.62.064701
    [12] 赵敏杰, 司福祺, 陆亦怀, 汪世美, 江宇, 周海金, 刘文清. 星载大气痕量气体差分吸收光谱仪定标系统中铝漫反射板实验测量研究.  , doi: 10.7498/aps.62.249301
    [13] 张小娟, 周青军, 杨薇. 光源附近空间分辨漫反射的SP3研究.  , doi: 10.7498/aps.61.034202
    [14] 兰忠, 徐威, 朱霞, 马学虎. 滴状冷凝过程壁面反射光谱的分子团聚模型分析.  , doi: 10.7498/aps.60.120508
    [15] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度.  , doi: 10.7498/aps.56.2119
    [16] 薛小波, 姚朝晖, 何 枫. 信息保存方法在微尺度变温流场中的应用研究.  , doi: 10.7498/aps.55.1276
    [17] 游铭长, 张舒安. 海面漫反射率近似表示式的解析推导.  , doi: 10.7498/aps.43.683
    [18] 陈篪, 邓枝生, 吴伯群, 丁树深. γ′晶体的蠕变及持久性能.  , doi: 10.7498/aps.23.69
    [19] 王鼎盛, 陈冠冕, 金朝鼎. 难向交变场频率对磁膜畴壁蠕移的影响.  , doi: 10.7498/aps.21.2030
    [20] 林鸿荪. 片流边界层中气流及热转移.  , doi: 10.7498/aps.10.71
计量
  • 文章访问数:  340
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-22
  • 修回日期:  2024-12-12
  • 上网日期:  2024-12-25

/

返回文章
返回
Baidu
map