Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics and suppression methods of low-frequency oscillation in Hall thruster

Chen Long Wang Di-Ya Chen Jun-Yu Duan Ping Yang Ye-Hui Tan Cong-Qi

Citation:

Characteristics and suppression methods of low-frequency oscillation in Hall thruster

Chen Long, Wang Di-Ya, Chen Jun-Yu, Duan Ping, Yang Ye-Hui, Tan Cong-Qi
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Low frequency oscillation in the discharge channel of Hall thruster is an important physical phenomenon that affects its performance and stability. In this paper, the characteristics of low-frequency oscillation of the discharge current of Hall thruster and its suppression method are numerically studied by using a one-dimensional fluid model. Assuming that the discharge channel satisfies the quasi-neutral condition, the effects of electron-neutral collision, electron anomalous transport and electron-wall collision on conductivity are considered. The changes of plasma parameters and the effects of magnetic field, preionization rate, and atomic velocity on the amplitude and frequency of discharge current oscillation are also studied. Research results show that the variation of electron temperature in the discharge channel is closely related to the ionization process, and the electron temperature increases as the ionization intensity increases. The fluctuations in neutral gas flow rate and atomic density in the discharge process cause the ionization region to move forward and backward and the ionization intensity to change, which are the main driving forces for the low-frequency oscillation of discharge current in the channel. The magnetic field intensity in the discharge channel affects the axial current by influencing the electron mobility. With the increase of field strength, the oscillation frequency of current decreases, and under different magnetic field strengths, the current amplitude drops as the discharge voltage decreases. When the preionization rate of the working gas increases to above 4%, the amplitude of the discharge current oscillation gradually decreases. When the preionization rate is greater than 3% and the atomic velocity is less than 160 m/s, the discharge current oscillation in the channel exhibits damping attenuation, achieving a stabilizing effect which conduces to stabilizing the discharge of the Hall thruster.
      Corresponding author: Duan Ping, duanping591@sohu.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975062, 11605021, 11975088).
    [1]

    Morozov A I 2003 Plasma Phys. Rep. 29 235Google Scholar

    [2]

    杨三祥, 王倩楠, 高俊, 贾艳辉, 耿海, 郭宁, 陈新伟, 袁兴龙, 张鹏 2022 71 105201Google Scholar

    Yang S X, Wang Q N, Gao J, Jia Y H, Geng H, Guo N, Chen X W, Yuan X L, Zhang P 2022 Acta Phys. Sin. 71 105201Google Scholar

    [3]

    魏立秋, 李文博, 蔡海阔, 孙建宁, 杨鑫勇, 于达仁 2020 宇航学报 41 666Google Scholar

    Wei L Q, Li W B, Cai H K, Sun J N Yang X Y, Yu D R 2020 J. Astronaut. 41 666Google Scholar

    [4]

    Duan P, Bian X Y, Cao A N, Liu G R, Chen L, Yin Y 2016 Plasma Sci. Technol. 18 525Google Scholar

    [5]

    Duan P, Liu G R, Bian X Y, Chen L, Yin Y, Cao A N 2016 Plasma Sci. Technol. 18 382Google Scholar

    [6]

    Wei L Q, Li W B, Ding Y J, Yu D R 2018 Plasma Sci. Technol. 20 075502Google Scholar

    [7]

    韩轲, 汪颖, 鲁海峰 2020 推进技术 41 1434Google Scholar

    Han K, Wang Y, Lu H F 2020 Journal of Propulsion Technology 41 1434Google Scholar

    [8]

    Wei L Q, Han L, Ding Y J, Yu D R, Zhang C H 2017 Rev. Sci. Instrum. 88 073502Google Scholar

    [9]

    Wang C, Wei L, Yu D 2011 Contrib. Plasma Phys. 51 981Google Scholar

    [10]

    Han L, Ding Y J, Wei L Q, Yu D R 2014 Rev. Sci. Instrum. 85 066113Google Scholar

    [11]

    Chauhan S, Ranjan M, Bandyopadhyay M, Mukherjee S 2016 Phys. Plasmas 23 123524Google Scholar

    [12]

    Yu D R, Wei L Q, Zhao Z Y, Han K, Yan G J 2008 Phys. Plasmas 15 043502Google Scholar

    [13]

    Wang C S, Wei L Q, Ning Z X, Yu D R 2011 Phys. Plasmas 18 013507Google Scholar

    [14]

    Fife J, Martinez-Sanchez M, Szabo J 1997 33rd Joint Propulsion Conference and Exhibit (Seattle: AIAA) p3052

    [15]

    Morozov A I, Savel’ev V 2000 Plasma Phys. Rep. 26 219Google Scholar

    [16]

    Morozov A I, Savel’ev V 2000 Plasma Phys. Rep. 26 875Google Scholar

    [17]

    Boeuf J P, Garrigues L 1998 J. Appl. Phys. 84 3541Google Scholar

    [18]

    张雯, 史锐, 费王华 2015 导弹与航天运载技术 4 99

    Zhang W, Shi R, Fei W H 2015 Missiles Space Veh. 4 99

    [19]

    Hara K, Mikellides I G 2018 Joint Propulsion Conference (Cincinnati: AIAA) p4904

    [20]

    Wei L Q, Li W B, Ding Y J, Han L, Yu D R, Cao Y 2017 Eur. Phys. J. Plus 132 452Google Scholar

    [21]

    Lafleur T, Chabert P, Bourdon A 2021 J. Appl. Phys. 130 053305Google Scholar

    [22]

    Dorf L, Raitses Y, Fisch N J 2006 Phys. Plasmas 13 057104Google Scholar

    [23]

    Bareilles J, Hagelaar G J M, Garrigues L, Boniface C, Boeuf J P, Gascon N 2004 Phys. Plasmas 11 3035Google Scholar

    [24]

    Hara K 2015 Ph. D. Dissertation (Ann Arbor: University of Michigan)

    [25]

    Yu D R, Wang C S, Wei L Q, Gao C, Yu G 2008 Phys. Plasmas 15 113503Google Scholar

    [26]

    Barral S, Ahedo E 2009 Phys. Rev. E 79 046401Google Scholar

    [27]

    Garrigues L, Heron A, Adam J C 2000 Plasma Sources Sci. Technol. 9 219Google Scholar

    [28]

    Chapurin O, Smolyakov A I, Hagelaar G, Raitses Y 2021 J. Appl. Phys. 129 233307Google Scholar

    [29]

    王雨龙 2013 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Wang Y L 2013 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [30]

    Hara K, Sekerak M J, Boyd I D, Gallimore A D 2014 Phys. Plasmas 21 122103Google Scholar

    [31]

    Dale E T, Jorns B A 2019 Phys. Plasmas 26 013516Google Scholar

    [32]

    Hara K 2019 Plasma Sources Sci. Technol. 28 044001Google Scholar

    [33]

    Andreussi T, Giannetti V, Leporini A, Saravia M M, Andrenucci M 2017 Phys. Plasmas 60 014015Google Scholar

    [34]

    Lafleur T, Baalrud S D, Chabert P 2016 Phys. Plasmas 23 053503Google Scholar

    [35]

    权路路, 邢伟, 鹿畅, 龚科瑜, 曹勇 2016 中国空间科学技术 36 51

    Quan L L, Xing W, Lu C, Gong K Y, Cao Y 2016 Chin. Space Sci. Technol. 36 51

  • 图 1  霍尔推力器典型立体结构及放电通道模拟区域示意图

    Figure 1.  Typical 3D structure of a Hall thruster and schematic of the simulation region for discharge channels.

    图 2  放电通道原子数密度和离子数密度分布 (a) 原子数密度; (b) 离子数密度

    Figure 2.  Atomic number density and ion number density distribution in the discharge channel: (a) Atomic number density; (b) ion number density.

    图 3  通道放电电流低频振荡变化规律

    Figure 3.  Low frequency oscillation of the channel discharge current.

    图 4  放电通道电子温度分布特性

    Figure 4.  Electron temperature distribution through the discharge channel.

    图 5  通道电场随时间的变化规律

    Figure 5.  The variation law of channel electric field with time.

    图 6  电子与壁面碰撞频率对电场分布的影响

    Figure 6.  The influence of electron-wall collision frequency on the distribution of electric field.

    图 7  通道轴向磁场强度分布及对电子迁移率的影响 (a)磁场强度在轴向上的分布; (b)磁场分布对轴向电子迁移率的影响

    Figure 7.  The distributions of axial magnetic field intensity and their effects on electron mobility: (a) Distributions of axial magnetic field intensity; (b) effects of magnetic field on electron mobility.

    图 8  不同磁场强度分布下放电电流频率和振幅随放电电压变化规律 (a)振荡频率变化规律; (b)振荡幅值变化规律

    Figure 8.  The variation of discharge current frequency and amplitude with discharge voltage under different magnetic field intensity distribution: (a) Oscillation frequency variation; (b) oscillation amplitude variation.

    图 9  不同预电离率下电流振荡振幅随通道电压变化规律

    Figure 9.  The variation of current oscillation amplitude with channel voltage under different preionization rates.

    图 10  通道原子速度对电流振荡和电离区位置的影响 (a) ${V_{\text{a}}} = 100 {\text{m}}/{\text{s}}$时电流振荡变化; (b) ${V_{\text{a}}} = 150 {\text{m}}/{\text{s}}$ 时电流振荡随时演化; (c) ${V_{\text{a}}} = 200 {\text{m}}/{\text{s}}$ 时电流振荡随时演化; (d) 3种原子速度下电离区中心位置随时演化

    Figure 10.  The influence of channel atomic velocity on current oscillation and ionization region position: (a) The evolution of current oscillation over time when ${V_{\text{a}}} = 100 {\text{m}}/{\text{s}}$; (b) the evolution of current oscillation over time when ${V_{\text{a}}} = 150 {\text{m}}/{\text{s}}$; (c) the evolution of current oscillation over time when ${V_{\text{a}}} = 200 {\text{m}}/{\text{s}}$; (d) the evolution of the ionization zone position under different atomic velocities.

    图 11  不同预电离率和原子速度下的电流振幅分布特性

    Figure 11.  The current amplitude distribution under different preionization rates and atomic velocities.

    Baidu
  • [1]

    Morozov A I 2003 Plasma Phys. Rep. 29 235Google Scholar

    [2]

    杨三祥, 王倩楠, 高俊, 贾艳辉, 耿海, 郭宁, 陈新伟, 袁兴龙, 张鹏 2022 71 105201Google Scholar

    Yang S X, Wang Q N, Gao J, Jia Y H, Geng H, Guo N, Chen X W, Yuan X L, Zhang P 2022 Acta Phys. Sin. 71 105201Google Scholar

    [3]

    魏立秋, 李文博, 蔡海阔, 孙建宁, 杨鑫勇, 于达仁 2020 宇航学报 41 666Google Scholar

    Wei L Q, Li W B, Cai H K, Sun J N Yang X Y, Yu D R 2020 J. Astronaut. 41 666Google Scholar

    [4]

    Duan P, Bian X Y, Cao A N, Liu G R, Chen L, Yin Y 2016 Plasma Sci. Technol. 18 525Google Scholar

    [5]

    Duan P, Liu G R, Bian X Y, Chen L, Yin Y, Cao A N 2016 Plasma Sci. Technol. 18 382Google Scholar

    [6]

    Wei L Q, Li W B, Ding Y J, Yu D R 2018 Plasma Sci. Technol. 20 075502Google Scholar

    [7]

    韩轲, 汪颖, 鲁海峰 2020 推进技术 41 1434Google Scholar

    Han K, Wang Y, Lu H F 2020 Journal of Propulsion Technology 41 1434Google Scholar

    [8]

    Wei L Q, Han L, Ding Y J, Yu D R, Zhang C H 2017 Rev. Sci. Instrum. 88 073502Google Scholar

    [9]

    Wang C, Wei L, Yu D 2011 Contrib. Plasma Phys. 51 981Google Scholar

    [10]

    Han L, Ding Y J, Wei L Q, Yu D R 2014 Rev. Sci. Instrum. 85 066113Google Scholar

    [11]

    Chauhan S, Ranjan M, Bandyopadhyay M, Mukherjee S 2016 Phys. Plasmas 23 123524Google Scholar

    [12]

    Yu D R, Wei L Q, Zhao Z Y, Han K, Yan G J 2008 Phys. Plasmas 15 043502Google Scholar

    [13]

    Wang C S, Wei L Q, Ning Z X, Yu D R 2011 Phys. Plasmas 18 013507Google Scholar

    [14]

    Fife J, Martinez-Sanchez M, Szabo J 1997 33rd Joint Propulsion Conference and Exhibit (Seattle: AIAA) p3052

    [15]

    Morozov A I, Savel’ev V 2000 Plasma Phys. Rep. 26 219Google Scholar

    [16]

    Morozov A I, Savel’ev V 2000 Plasma Phys. Rep. 26 875Google Scholar

    [17]

    Boeuf J P, Garrigues L 1998 J. Appl. Phys. 84 3541Google Scholar

    [18]

    张雯, 史锐, 费王华 2015 导弹与航天运载技术 4 99

    Zhang W, Shi R, Fei W H 2015 Missiles Space Veh. 4 99

    [19]

    Hara K, Mikellides I G 2018 Joint Propulsion Conference (Cincinnati: AIAA) p4904

    [20]

    Wei L Q, Li W B, Ding Y J, Han L, Yu D R, Cao Y 2017 Eur. Phys. J. Plus 132 452Google Scholar

    [21]

    Lafleur T, Chabert P, Bourdon A 2021 J. Appl. Phys. 130 053305Google Scholar

    [22]

    Dorf L, Raitses Y, Fisch N J 2006 Phys. Plasmas 13 057104Google Scholar

    [23]

    Bareilles J, Hagelaar G J M, Garrigues L, Boniface C, Boeuf J P, Gascon N 2004 Phys. Plasmas 11 3035Google Scholar

    [24]

    Hara K 2015 Ph. D. Dissertation (Ann Arbor: University of Michigan)

    [25]

    Yu D R, Wang C S, Wei L Q, Gao C, Yu G 2008 Phys. Plasmas 15 113503Google Scholar

    [26]

    Barral S, Ahedo E 2009 Phys. Rev. E 79 046401Google Scholar

    [27]

    Garrigues L, Heron A, Adam J C 2000 Plasma Sources Sci. Technol. 9 219Google Scholar

    [28]

    Chapurin O, Smolyakov A I, Hagelaar G, Raitses Y 2021 J. Appl. Phys. 129 233307Google Scholar

    [29]

    王雨龙 2013 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Wang Y L 2013 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [30]

    Hara K, Sekerak M J, Boyd I D, Gallimore A D 2014 Phys. Plasmas 21 122103Google Scholar

    [31]

    Dale E T, Jorns B A 2019 Phys. Plasmas 26 013516Google Scholar

    [32]

    Hara K 2019 Plasma Sources Sci. Technol. 28 044001Google Scholar

    [33]

    Andreussi T, Giannetti V, Leporini A, Saravia M M, Andrenucci M 2017 Phys. Plasmas 60 014015Google Scholar

    [34]

    Lafleur T, Baalrud S D, Chabert P 2016 Phys. Plasmas 23 053503Google Scholar

    [35]

    权路路, 邢伟, 鹿畅, 龚科瑜, 曹勇 2016 中国空间科学技术 36 51

    Quan L L, Xing W, Lu C, Gong K Y, Cao Y 2016 Chin. Space Sci. Technol. 36 51

Metrics
  • Abstract views:  3298
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  27 April 2023
  • Accepted Date:  28 June 2023
  • Available Online:  06 July 2023
  • Published Online:  05 September 2023

/

返回文章
返回
Baidu
map