-
To meet the requirements of both high thermal conductivity and substantial latent heat storage and release in spacecraft thermal management materials, this study employs a hot-pressing technique to fabricate a multidimensional carbon-based, thermally enhanced microencapsulated phase change composite. This approach addresses the limitations of conventional phase change materials, which exhibit low thermal conductivity and a propensity for liquid leakage. By integrating experimental assessments with finite element numerical simulations, we systematically investigated the effects of varying contents and ratios of microencapsulated phase change materials, flake graphite, and pitch-based carbon fibers on the composite’s thermal properties, specifically thermal conductivity and latent heat. Furthermore, the formation mechanism of the internal multidimensional thermal conduction network was elucidated.
The results indicate that introducing multidimensional thermally conductive materials into the microencapsulated phase change system, coupled with the optimization of component composition and structure, can establish a continuous and dense multidimensional carbon-based conduction network. Leveraging the synergistic effects of these conductive materials and employing a multi-size flake graphite filling strategy significantly enhanced the overall thermal conductivity of the composite, reaching 1.021 W·m-1·K-1, while maintaining a high latent heat of 81.540 J·g-1. These findings provide theoretical and practical guidance for the optimization and application of advanced thermal management materials in spacecrafts.-
Keywords:
- spacecraft thermal management /
- microcapsule phase change composite materials /
- multidimensional carbon-based network /
- synergistic thermal enhancement
-
[1] Li X Z, Tang G H, Wang Z H, Feng J C, Zhang X F 2024 Acta Phys. Sin. 73 184401 (in Chinese) [李心泽,唐桂华,汪子涵,冯建朝,张晓峰 2024 73 184401]
[2] Wang Z H, He C B, Hu Y, Tang G H 2024 Sci. China Tech. Sci. 67 2387-2404
[3] Drissi S, Ling T C, Mo K H 2019 Thermochim Acta 673 198-210
[4] Wu W F, Liu N, Cheng W L, Liu Y 2013 Energy Convers. Manag. 69 174-180
[5] Kong Q Q, Jia H, Xie L J, Tao Z C, Yang X, Liu D, Sun G H, Guo Q G, Lu C X, Chen C M 2021 Compos. Part A 145 106391
[6] Velez C, Ortiz de Zarate J M, Khayet M 2015 Int. J. Therm. Sci. 94 139-146
[7] Haddad Z, Buonomo B, Abu-Nada E, Manca O 2024 Renew. Sustain. Energy Rev. 205 114826
[8] Chang Z, Wang K, Wu X H, Lei G, Wang Q, Liu H, Wang Y L, Zhang Q 2022 J. Energy Storage 46 103840
[9] Xu R, Xia X, Wang W, Yu D 2020 Colloids Surf. A 591 124519
[10] Wang X T, Chen H X, Kuang D L, Huan X, Zeng Z Y, Qi C, Han S J, Li G Y 2024 Compos. Sci. Technol. 257 110836
[11] Zhang D F, Cai T Y, Li Y J, Li Y S, He F F, Chen Z G, Zhu L Q, He C D, Yang W B 2022 ChemistrySelect 7 103840
[12] Wu X H, Gao M T, Wang K, Wang Q W, Cheng C X, Zhu Y J, Zhang F F, Zhang Q 2021 J. Energy Storage 36 102398
[13] Lu X T, Qian R D, Xu X Y, Liu M, Liu Y F, Zou D Q 2024 Nano Energy 124 109520
[14] He M Z, Xiao Z H, Chen J X, Bian J, Xie P J 2024 Fine Chemicals 41 1153-1162 (in Chinese) [何媚质,肖志豪,陈嘉祥,边晶,谢培靖 2024 精细化工 41 1153-1162]
[15] Dubey A K, Sun J, Choudhary T, Dash M, Rakshit D, Ansari M Z, Ramakrishna S, Liu Y, Nanda H S 2023 Renew. Sustain. Energy Rev. 182 113421
[16] Li S Y, Yan T, Pan W G 2024 Cell Rep. Phys. Sci. 5 102046
[17] Xia Y, Zhang H, Huang P, Huang C, Xu F, Zou Y, Chu H, Yan E, Sun L 2019 Chem. Eng. J. 362 909
[18] Nomura T, Tabuchi K, Zhu C, Sheng N, Wang S, Akiyama T 2015 Appl. Energy 154 678
[19] Cheng P, Chen X, Gao H Y, Zhang X W, Tang Z D, Li A, Wang G 2021 Nano Energy 85 105948
[20] Yang M, Li X, Chen W 2024 Appl. Energy 371 123726
[21] Prieto R, Molina J M, Narciso J, Louis E 2011 Compos. Part A 42 1970-1977
[22] Zhang H M, Chao M J, Zhang H S, Tang A, Ren B, He X B 2014 Appl. Therm. Eng. 73 739-744
[23] Yang M S, Li X Y, Chen W Q 2024 Appl. Energy 371 123726
[24] Tian W L, Qi L H, Chao X J, Liang J H, Fu M W 2019 Compos. Part B 162 1-10
[25] Xu J Z, Gao B Z, Du H D, Kang F Y 2016 Int. J. Therm. Sci. 104 348-356
[26] Xu J Z, Gao B Z, Kang F Y 2016 Appl. Therm. Eng. 102 972-979
[27] Zha J W, Wang F, Wan B Q 2025 Prog. Mater. Sci. 148 101362
[28] Yan X W, Xie Y, Fang Q Z, Hu Y, Xin Q Q 2024 Int. Commun. Heat Mass Transf. 159 108018
[29] Cernuschi F, Kulczyk-Malecka J, Zhang X, Nozahic F, Estournès C, Sloof W G 2023 J. Eur. Ceram. Soc. 43 6296-6307
Metrics
- Abstract views: 60
- PDF Downloads: 0
- Cited By: 0