Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Arrival time diagnosis method of high refrequency hard X-ray free electron laser

Zhang Shao-Jun Guo Zhi Cheng Jia-Min Wang Yong Chen Jia-Hua Liu Zhi

Citation:

Arrival time diagnosis method of high refrequency hard X-ray free electron laser

Zhang Shao-Jun, Guo Zhi, Cheng Jia-Min, Wang Yong, Chen Jia-Hua, Liu Zhi
PDF
HTML
Get Citation
  • X-ray free electron laser (XFEL) pulse time diagnosis technology is often used to detect the relative arrival time of XFEL pulse and auxiliary laser near the experimental station. It is an important auxiliary technology and provides a reference signal for the pump-probe pulse in the XFEL laser pump-probe experiment. With the development of XFEL towards high repetition frequency and short pulse, higher requirements are put forward for diagnostic frequency, pump sample and resolution in time diagnosis. The technology is realized by the pump-probe method and optical cross-correlation method. When the XFEL pulse is incident on the high-bandwidth semiconductor solid target instantaneously, the complex refractive index of the solid target will change, then the arrival time of XFEL will be encoded in the mutation space. In thiswork, we design an XFEL pulse arrival time diagnostic device based on two methods: spatial coding and spectral coding. In this framework, the interaction between X-ray and solid target is explored by Beer's absorption theory and atomic scattering theory. Therefore, the response to X-ray absorption and refractive index in this process are investigated, and the solid target selection model is developed. This model is used to analyze the influence of solid target type and thickness in diagnosis, while avoiding situations where the sample is too hot due to a lot X-ray absorption. Moreover, the influence of hard X-ray on sample temperature at high frequency is considered, and the samples suitable for different X-ray bands are given. The chirped pulse modulation in spectral coding is analyzed, and the influence of dispersion medium and pulse parameters on the diagnostic resolution of spectral coding are obtained. Finally, the error effects of X-ray, spatial coding and spectral coding on the results are analyzed, and the analysis methods and consideration factors of the two coding methods are given. This work is of great significance in using the XFEL pulse arrival time diagnostic device.
      Corresponding author: Guo Zhi, guoz@sari.ac.cn ; Liu Zhi, liuzhi@shanghaitech.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFB3503904) and the National Natural Science Foundation of China (Grant No. 12075304).
    [1]

    赵振堂, 冯超 2018 物理 47 481Google Scholar

    Zhao Z T, Feng C 2018 Physics 47 481Google Scholar

    [2]

    Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, Williams G J 2016 Rev. Mod. Phys. 88 18Google Scholar

    [3]

    Emma P, Akre R, Arthur J, et al. 2010 Nat. Photonics 4 641Google Scholar

    [4]

    Harmand M, Coffee R, Bionta M R, Chollet M, French D, Zhu D, Fritz D M, Lemke H T, Medvedev N, Ziaja B, Toleikis S, Cammarata M 2013 Nat. Photonics 7 215Google Scholar

    [5]

    Schulz S, Grguras I, Behrens C, Bromberger H, Costello J T, Czwalinna M K, Felber M, Hoffmann M C, Ilchen M, Liu H Y, Mazza T, Meyer M, Pfeiffer S, Predki P, Schefer S, Schmidt C, Wegner U, Schlarb H, Cavalieri A L 2015 Nat. Commun 6 5938Google Scholar

    [6]

    Grychtol P, Rivas D E, Baumann T M, et al. 2021 Opt. Express 29 37429Google Scholar

    [7]

    Sato T, Letrun R, Kirkwood H J, et al. 2020 Optica 7 716Google Scholar

    [8]

    Nakajima K, Joti Y, Katayama T, Owada S, Togashi T, Abe T, Kameshima T, Okada K, Sugimoto T, Yamaga M, Hatsui T, Yabashi M 2018 J. Synchrotron Radiat. 25 592Google Scholar

    [9]

    Düsterer S, Rehders M, Al-Shemmary A, et al. 2014 Phys. Rev. Spec. Top. Accel. Beams 17 23545Google Scholar

    [10]

    Sanchez-Gonzalez A, Johnson A S, Fitzpatrick A, Hutchison C D M, Fare C, Cordon-Preciado V, Dorlhiac G, Ferreira J L, Morgan R M, Marangos J P, Owada S, Nakane T, Tanaka R, Tono K, Iwata S, van Thor J J 2017 J. Appl. Phys. 122 203105Google Scholar

    [11]

    Hartmann N, Helml W, Galler A, Bionta M R, Grünert J, L. Molodtsov S, Ferguson K R, Schorb S, Swiggers M L, Carron S, Bostedt C, Castagna J C, Bozek J, Glownia J M, Kane D J, Fry A R, White W E, Hauri C P, Feurer T, Coffee R N 2014 Nat. Photonics 8 706Google Scholar

    [12]

    Maltezopoulos T, Photonen D F M, Cunovic S, Wieland M, Drescher M 2008 New J. Phys. 10 1218Google Scholar

    [13]

    Schorb S, Gorkhover T, Cryan J P, Glownia J M, Bionta M R, Coffee R N, Erk B, Boll R, Schmidt C, Rolles D, Rudenko A, Rouzee A, Swiggers M, Carron S, Castagna J C, Bozek J D, Messerschmidt M, Schlotter W F, Bostedt C 2012 Appl. Phys. Lett. 100 121107Google Scholar

    [14]

    Beye M, Krupin O, Hays G, Reid A H, Rupp D, Jong S d, Lee S, Lee W S, Chuang Y D, Coffee R, Cryan J P, Glownia J M, Föhlisch A, Holmes M R, Fry A R, White W E, Bostedt C, Scherz A O, Durr H A, Schlotter W F 2012 Appl. Phys. Lett. 100 121108Google Scholar

    [15]

    Katayama T, Owada S, Togashi T, Ogawa K, Karvinen P, Vartiainen I, Eronen A, David C, Sato T, Nakajima K, Joti Y, Yumoto H, Ohashi H, Yabashi M 2016 Struct. Dynam. -US 3 034301Google Scholar

    [16]

    Droste S, Zohar S, Shen L, White V E, Diaz-Jacobo E, Coffee R N, Reid A H, Tavella F, Minitti M P, Turner J J, Robinson J S, Fry A R, Coslovich G 2020 Opt. Express 28 23545Google Scholar

    [17]

    Bionta M R, Lemke H T, Cryan J P, Glownia J M, Bostedt C, Cammarata M, Castagna J C, Ding Y, Fritz D M, Fry A R, Krzywinski J, Messerschmidt M, Schorb S, Swiggers M L, Coffee R N 2011 Opt. Express 19 21855Google Scholar

    [18]

    Kirkwood H J, Letrun R, Tanikawa T, et al. 2019 Opt. Lett. 44 1650Google Scholar

    [19]

    Diez M, Galler A, Schulz S, Boemer C, Coffee R N, Hartmann N, Heider R, Wagner M S, Helml W, Katayama T, Sato T, Sato T, Yabashi M, Bressler C 2021 Sci. Rep. 11 3562Google Scholar

    [20]

    Owada S, Nakajima K, Togashi T, Katayama T, Yumoto H, Ohashi H, Yabashi M 2019 J. Synchrotron Radiat. 26 887Google Scholar

    [21]

    Krupin O, Trigo M, Schlotter W F, et al. 2012 Opt. Express 20 11396Google Scholar

    [22]

    Attwood D 1999 Soft X-rays and Extreme Ultraviolet Radiation (New York: Cambridge) pp98–122

    [23]

    Teubner U, Wagner U, Forster E 2001 J. Phys. B:At. Mol. Opt. Phys. 34 2993Google Scholar

    [24]

    Wang K, Qian L J, Luo H, Yuan P, Zhu H Y 2006 Opt. Express 14 6366Google Scholar

    [25]

    Wang J, Zhang Y, Shen H, Jiang Y, Wang Z 2017 Opt. Eng. 56 076107Google Scholar

  • 图 1  XFEL脉冲到达时间诊断系统光路示意图, 诊断系统位于XFEL束线末端, 实验线站之前. 其中红色光束为空间编码, 绿色光束为光谱编码光路, 插图为空间编码示意图

    Figure 1.  Optical layout of PAM (XFEL pulse arrival time monitor), PAM is located before the experimental station, at the end of the XFEL beam line. Red optical layout is spatial coding, green optical layout is spectral coding, illustration is a spatial coding diagram.

    图 2  诊断设备机械设计和光学布局 (a) 诊断设备整体设计图; (b) 空间编码、光谱编码在腔体外的光路布局和腔体内部透视

    Figure 2.  Mechanical design and optical layout: (a) Overall design drawing of diagnostic equipment; (b) optical layout design of spatial coding, spectral coding and chamber fluoroscopy.

    图 3  不同厚度样品下的X射线透射率 (a) Si3N4; (b) GaAs; (c) 金刚石膜

    Figure 3.  Transmittance of X-ray in samples with different thicknesses: (a) Si3N4; (b) GaAs; (c) diamond film.

    图 4  泵浦样品的有限元热分析结果 (a) Si3N4; (b) 金刚石膜

    Figure 4.  Finite element thermal analysis of the pumped sample: (a) Si3N4; (b) diamond film.

    图 5  (a) X射线泵浦后探测激光透过样品的透射变化率; (b) XFEL脉冲入射到GaAs, Si3N4和金刚石薄膜(diamond film)样品靶的透射率

    Figure 5.  (a) The change rate of laser transmission through the sample is detected after X-ray pump; (b) transmittance of XFEL pulses incident on GaAs, Si3N4 and diamond film.

    图 6  带宽为 450—650 nm的超连续谱分别入射厚度为20, 25, 35和50 mm的色散玻璃时的脉宽调制 (a) SF11; (b) SF57

    Figure 6.  Pulse width broadening of the probing laser with super-continuum bandwidth 450–650 nm, after transmitting the dispersive glass with thickness 20, 25, 35 and 50 mm: (a) SF11; (b) SF57

    图 7  500和600 nm中心波长下不同谱宽探测激光随脉冲长度展宽的分辨率极限

    Figure 7.  Resolution limits of laser broadening with pulse length at 500 and 600 nm central wavelengths with different spectral widths.

    图 8  200 nm谱宽的啁啾连续谱通过SF11玻璃的非线性展宽导致相邻波长之间的非线性时间差

    Figure 8.  Nonlinear time difference between adjacent wavelengths due to nonlinear broadening of SF11 glass is shown for the chirp continuum spectrum with 200 nm spectrum width.

    表 1  GaAs, Si3N4和金刚石膜三种半导体材料用于到达时间诊断的相关参数

    Table 1.  Parameters for GaAs, Si3N4 and diamond film semiconductor materials for arriving time diagnosis.

    种类规格带宽吸收长度*密度熔点导热系数
    mm2eVnmg/cm3W/(cm·K)
    Si3N41025360—44313.1918001.369
    GaAs1021.43321—21665.3112380.46
    Diamond1025.5367—37143.515355023
    * X射线波长范围0.4—2 nm
    DownLoad: CSV

    表 2  Si3N4, GaAs和金刚石膜中载流子的有效质量和弛豫时间

    Table 2.  Effective mass and relaxation time of carriers in GaAs, Si3N4 and diamond film.

    样品$ {m}_{{\rm{e}}}^{*} $$ {m}_{{\rm{h}}}^{*} $$ {\tau }_{\text{e}} $/ps$ {\tau }_{{\rm{h}}} $/ps
    Si3N40.3$ {m}_{{\rm{e}}}^{} $0.3$ {m}_{{\rm{e}}}^{} $0.50.5
    GaAs0.067$ {m}_{{\rm{e}}}^{} $0.4$ {m}_{{\rm{e}}}^{} $4.82
    Diamond0.28$ {m}_{{\rm{e}}}^{} $1.22$ {m}_{{\rm{e}}}^{} $1.51.4
    DownLoad: CSV
    Baidu
  • [1]

    赵振堂, 冯超 2018 物理 47 481Google Scholar

    Zhao Z T, Feng C 2018 Physics 47 481Google Scholar

    [2]

    Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, Williams G J 2016 Rev. Mod. Phys. 88 18Google Scholar

    [3]

    Emma P, Akre R, Arthur J, et al. 2010 Nat. Photonics 4 641Google Scholar

    [4]

    Harmand M, Coffee R, Bionta M R, Chollet M, French D, Zhu D, Fritz D M, Lemke H T, Medvedev N, Ziaja B, Toleikis S, Cammarata M 2013 Nat. Photonics 7 215Google Scholar

    [5]

    Schulz S, Grguras I, Behrens C, Bromberger H, Costello J T, Czwalinna M K, Felber M, Hoffmann M C, Ilchen M, Liu H Y, Mazza T, Meyer M, Pfeiffer S, Predki P, Schefer S, Schmidt C, Wegner U, Schlarb H, Cavalieri A L 2015 Nat. Commun 6 5938Google Scholar

    [6]

    Grychtol P, Rivas D E, Baumann T M, et al. 2021 Opt. Express 29 37429Google Scholar

    [7]

    Sato T, Letrun R, Kirkwood H J, et al. 2020 Optica 7 716Google Scholar

    [8]

    Nakajima K, Joti Y, Katayama T, Owada S, Togashi T, Abe T, Kameshima T, Okada K, Sugimoto T, Yamaga M, Hatsui T, Yabashi M 2018 J. Synchrotron Radiat. 25 592Google Scholar

    [9]

    Düsterer S, Rehders M, Al-Shemmary A, et al. 2014 Phys. Rev. Spec. Top. Accel. Beams 17 23545Google Scholar

    [10]

    Sanchez-Gonzalez A, Johnson A S, Fitzpatrick A, Hutchison C D M, Fare C, Cordon-Preciado V, Dorlhiac G, Ferreira J L, Morgan R M, Marangos J P, Owada S, Nakane T, Tanaka R, Tono K, Iwata S, van Thor J J 2017 J. Appl. Phys. 122 203105Google Scholar

    [11]

    Hartmann N, Helml W, Galler A, Bionta M R, Grünert J, L. Molodtsov S, Ferguson K R, Schorb S, Swiggers M L, Carron S, Bostedt C, Castagna J C, Bozek J, Glownia J M, Kane D J, Fry A R, White W E, Hauri C P, Feurer T, Coffee R N 2014 Nat. Photonics 8 706Google Scholar

    [12]

    Maltezopoulos T, Photonen D F M, Cunovic S, Wieland M, Drescher M 2008 New J. Phys. 10 1218Google Scholar

    [13]

    Schorb S, Gorkhover T, Cryan J P, Glownia J M, Bionta M R, Coffee R N, Erk B, Boll R, Schmidt C, Rolles D, Rudenko A, Rouzee A, Swiggers M, Carron S, Castagna J C, Bozek J D, Messerschmidt M, Schlotter W F, Bostedt C 2012 Appl. Phys. Lett. 100 121107Google Scholar

    [14]

    Beye M, Krupin O, Hays G, Reid A H, Rupp D, Jong S d, Lee S, Lee W S, Chuang Y D, Coffee R, Cryan J P, Glownia J M, Föhlisch A, Holmes M R, Fry A R, White W E, Bostedt C, Scherz A O, Durr H A, Schlotter W F 2012 Appl. Phys. Lett. 100 121108Google Scholar

    [15]

    Katayama T, Owada S, Togashi T, Ogawa K, Karvinen P, Vartiainen I, Eronen A, David C, Sato T, Nakajima K, Joti Y, Yumoto H, Ohashi H, Yabashi M 2016 Struct. Dynam. -US 3 034301Google Scholar

    [16]

    Droste S, Zohar S, Shen L, White V E, Diaz-Jacobo E, Coffee R N, Reid A H, Tavella F, Minitti M P, Turner J J, Robinson J S, Fry A R, Coslovich G 2020 Opt. Express 28 23545Google Scholar

    [17]

    Bionta M R, Lemke H T, Cryan J P, Glownia J M, Bostedt C, Cammarata M, Castagna J C, Ding Y, Fritz D M, Fry A R, Krzywinski J, Messerschmidt M, Schorb S, Swiggers M L, Coffee R N 2011 Opt. Express 19 21855Google Scholar

    [18]

    Kirkwood H J, Letrun R, Tanikawa T, et al. 2019 Opt. Lett. 44 1650Google Scholar

    [19]

    Diez M, Galler A, Schulz S, Boemer C, Coffee R N, Hartmann N, Heider R, Wagner M S, Helml W, Katayama T, Sato T, Sato T, Yabashi M, Bressler C 2021 Sci. Rep. 11 3562Google Scholar

    [20]

    Owada S, Nakajima K, Togashi T, Katayama T, Yumoto H, Ohashi H, Yabashi M 2019 J. Synchrotron Radiat. 26 887Google Scholar

    [21]

    Krupin O, Trigo M, Schlotter W F, et al. 2012 Opt. Express 20 11396Google Scholar

    [22]

    Attwood D 1999 Soft X-rays and Extreme Ultraviolet Radiation (New York: Cambridge) pp98–122

    [23]

    Teubner U, Wagner U, Forster E 2001 J. Phys. B:At. Mol. Opt. Phys. 34 2993Google Scholar

    [24]

    Wang K, Qian L J, Luo H, Yuan P, Zhu H Y 2006 Opt. Express 14 6366Google Scholar

    [25]

    Wang J, Zhang Y, Shen H, Jiang Y, Wang Z 2017 Opt. Eng. 56 076107Google Scholar

  • [1] Zhang Jia-Xi, Li Ling-Feng, Zhong Hong-Wen, Xiao Jia-Ying. Miniaturized photoacoustic/ultrasound endoscopic imaging probe for molecular imaging of deep tissues. Acta Physica Sinica, 2024, 73(21): 214203. doi: 10.7498/aps.73.20241076
    [2] Nie Yong-Gan, Gao Zi-Chen, Tong Ya-Jun, Fan Jia-Dong, Liu Gong-Fa, Jiang Huai-Dong. Design and implementation of timing system for single-shot imaging at Shanghai soft X-ray free-electron laser. Acta Physica Sinica, 2024, 73(12): 120701. doi: 10.7498/aps.73.20240383
    [3] Wang Jing, Pang Jin-Bo, Guo He-Ze, Hu Xin-Yu, Zhou Cheng-Chen, Tang Wen-Jing, Jiang Kai, Xia Wei. Operation characteristics of mid-infrared optical parametric oscillation pumped by layered WS2 modulated laser. Acta Physica Sinica, 2022, 71(2): 024204. doi: 10.7498/aps.71.20211409
    [4] Operation characteristics of Mid-infrared optical parametric oscillation pumped by layered WS2 modulated laser. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211409
    [5] Huang Pei,  Fang Shao-Bo,  Huang Hang-Dong,  Hou Xun,  Wei Zhi-Yi. Coherent synthesis of ultrashort pulses based on balanced optical cross-correlator. Acta Physica Sinica, 2018, 67(24): 244204. doi: 10.7498/aps.67.20181851
    [6] Feng Lei, Jiang Gang. 2000 eV X-ray laser transparent mechanism of neon atom. Acta Physica Sinica, 2017, 66(15): 153201. doi: 10.7498/aps.66.153201
    [7] Qin Peng, Chen Wei, Song You-Jian, Hu Ming-Lie, Chai Lu, Wang Ching-Yue. Long range absolute distance measurement based on femtosecond laser balanced optical cross-correlation. Acta Physica Sinica, 2012, 61(24): 240601. doi: 10.7498/aps.61.240601
    [8] Guo Wen-Gang, Hu Hao-Feng, Wang Pan, Wang Xiao-Lei, Zhai Hong-Chen. Time-resolved optical diagnosis of intense femtosecond laser ablation of silica glass. Acta Physica Sinica, 2011, 60(1): 017901. doi: 10.7498/aps.60.017901
    [9] Wang Chen, Wang Wei, Sun Jin-Ren, Fang Zhi-Heng, Wu Jiang, Fu Si-Zu, Ma Wei-Xin, Gu Yuan, Wang Shi-Ji, Zhang Guo-Ping, Zheng Wu-Di, Zhang Tan-Xin, Peng Hui-Min, Shao Ping, Yi Kui, Lin Zun-Qi, Wang Zhan-Shan, Wang Hong-Chang, Zhou Bin, Chen Ling-Yan. Experimental diagnoses of plasma electron density by interferometry using an x-ray laser as probe. Acta Physica Sinica, 2005, 54(1): 202-205. doi: 10.7498/aps.54.202
    [10] Shen Jing-Ling, Zhang Cun-Lin, Hu Ying, S. P. Jamison. Chirped pulse cross-correlation for THz wave measurement. Acta Physica Sinica, 2004, 53(7): 2212-2215. doi: 10.7498/aps.53.2212
    [11] SHE WEI-LONG, YU ZHEN-XIN, LEE WING KEE. SELF-PUMPED PHASE CONJUGATION OF IMPERFECTLY MODE-LOCKED PICOSECOND LASER PULSES INDUCED BY A PHOTOREFRACTIVE WAVEGUIDE. Acta Physica Sinica, 1996, 45(12): 2010-2015. doi: 10.7498/aps.45.2010
    [12] ZHAO DONG-HUAN. ANALYSIS OF EFFECTIVE TIME OF INTERACTION BETWEEN ELECTRON AND RADIATIVE WAVE IN THE FEL. Acta Physica Sinica, 1996, 45(4): 573-579. doi: 10.7498/aps.45.573
    [13] Liu Yong-Gui, Qian Bao-Liang, Li Chuan-Lu. . Acta Physica Sinica, 1995, 44(3): 409-412. doi: 10.7498/aps.44.409
    [14] MENG LIN, LIU SHENG-GANG. INFLUENCE OF UNTRAPPED ELECTRONS ON THE SIDE-BAND INSTABILITY OF ELECTROMAGNETIC WIGGLER FREE ELECTRON LASER. Acta Physica Sinica, 1994, 43(6): 904-912. doi: 10.7498/aps.43.904
    [15] CHEN JI-ZHONG, WANG MING-CHANG, WANG ZHI-JIANG, LU ZAI-TONG. STUDIES OF RAMAN FREE ELECTRON LASER BY AN OPTICAL KLYSTRON CONFIGURATION. Acta Physica Sinica, 1990, 39(9): 1379-1384. doi: 10.7498/aps.39.1379
    [16] GUAN XIN-AN, ZHAO ZHI-HONG. A BASIC EQUATION AND ITS SOLUTION FOR SYNCHRONOUSLY PUMPED-PASSIVE MODE-LOCKED DYE LASERS. Acta Physica Sinica, 1989, 38(1): 16-23. doi: 10.7498/aps.38.16
    [17] BAO XIAO-YI, WU CUN-KAI. EFFECT OF THE PHASE ON OUTPUT PARAMETERS IN A SYNCHRONOUSLY PUMPED DYE LASER. Acta Physica Sinica, 1988, 37(5): 851-856. doi: 10.7498/aps.37.851
    [18] GUAN XIN-AN, ZHAO ZHI-HONG. A NEW MODE-LOCKED EQUATION FOR SYNCHRONOUSLY PUMPED DYE LASERS AND ITS SOLUTION. Acta Physica Sinica, 1988, 37(2): 335-340. doi: 10.7498/aps.37.335
    [19] MA JIN-XIU, XU ZHI-ZHAN. THE ELIMINATION OF PUMP DEPLETION IN LASER-PLASMA BEAT-WAVE ACCELERATORS. Acta Physica Sinica, 1988, 37(10): 1652-1657. doi: 10.7498/aps.37.1652
    [20] WANG ZU-GENG, LI MIN. OPTICALLY PUMPED Li2 LASER. Acta Physica Sinica, 1988, 37(10): 1640-1645. doi: 10.7498/aps.37.1640
Metrics
  • Abstract views:  3485
  • PDF Downloads:  105
  • Cited By: 0
Publishing process
  • Received Date:  22 December 2022
  • Accepted Date:  22 February 2023
  • Available Online:  23 March 2023
  • Published Online:  20 May 2023

/

返回文章
返回
Baidu
map