搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多元醇二元体系固-固相变机理的研究

王小伍 徐海红

引用本文:
Citation:

多元醇二元体系固-固相变机理的研究

王小伍, 徐海红

Study of the solid-solid phase change in polyalcohol binary systems

Wang Xiao-Wu, Xu Hai-Hong
PDF
导出引用
  • 多元醇在一定温度下发生固-固相变,大量文献都报道了它们的固-固相变焓、相变温度以及相图. 本文以红外光谱测试结果以及量热实验结果为基础,探讨了新戊二醇/季戊四醇二元体系的固-固相变焓与氢键的关系:二元体系中部分分子间氢键变弱,变弱的氢键更易于断裂;温度上升到一定值,新戊二醇在季戊四醇中的相向塑性晶体相相变时保留下来的氢键断裂,形成二元体系的量热曲线的第二个吸收峰;高新戊二醇浓度的二元体系,可能保留下来的氢键数量少,第二个吸收峰对应的焓值小,但保留的氢键受新戊二醇影响更大,第二个吸收峰对应的温度更低.
    Many polyalcohols can change from one crystal structure to another in solid state at certain temperatures. A lot of papers reported their phase transition enthalpy, transition temperatures, and phase diagrams. This paper investigates the relation between transition enthalpy and hydrogen bond for the NPG (Neopentylglycol) and PE (Pentaerythritol) binary system on the basis of infrared spectrum experimental data and calorimetric results. It is shown that in the binary system some of the associated hydrogen bonds become weaker and are easier to break up. When temperature rises to a certain value, the hydrogen bonds, which retain in the course of phase transformation from the phase of NPG in PE to the plastic phase, will break up and form the second endothermal peak on the calorimetric curve. The number of retained hydrogen bonds is larger for the binary system NPG/PE with higher NPG concentration, and as a result, the corresponding enthalpy for the second endothermal peak is larger. While the influence of NPG on the retained hydrogen bonds is larger for binary system NPG/PE with higher NPG concentration, and the corresponding temperature of the second endothermal peak is lower.
    • 基金项目: 国家自然科学基金青年科学基金(批准号:21106048)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 21106048).
    [1]

    Wang X W, Xu H H 2011 Acta Phys. Sin. 60 030507 (in Chinese)[王小伍, 徐海红 2011 60 030507]

    [2]

    Feng H Y, Liu X D, He SH M, Wu K ZH, Zhang J L 1999 Acta Physico-Chimica Sinica 15 850 (in Chinese)[冯海燕, 刘晓地, 何书美, 武克忠, 张建玲 1999 物理化学学报 15 850]

    [3]

    Sturz L, Witusiewicz V T, Hecht U, Rex S 2004 Journal of Crystal Growth 270 273

    [4]

    Barrio M, Lo'pez D O, Ll J, Negrier T P, Haget Y 1996 Journal of Solid State Chemistry 124 29

    [5]

    Dhanesh Chandra, Raja Chellappa, Wen-Ming Chien 2005 Journal of Physics and Chemistry of Solids 66 235

    [6]

    Zhang ZH H, Han K, Li H P, Tang G, Wu Y X, Wang H T, Bai L 2008 Acta Phys. Sin. 57 3160 (in Chinese)[张兆慧, 韩奎, 李海鹏, 唐刚, 吴玉喜, 王洪涛, 白磊 2008 57 3160]

    [7]

    Barrio M, Font J, Muntasell J, Navarro J, Ll Tamarit J 1998 Solar Energy Materials 18 109

    [8]

    Ji Z H, Zeng X H, Cen J P, Tan M Q 2010 Acta Phys. Sin. 59 1219 (in Chinese)[季正华, 曾祥华, 岑洁萍, 谭明秋 2010 59 1219]

    [9]

    Bettina Granzow 1996 Journal of Molecular Structure 381 127

    [10]

    Benson D K, Burrows R W, Webb J D 1986 Solar Energy Materials 13 133

    [11]

    Chen Z H, Chen C H L, Wen X L, Wen J 2008 Acta Phys. Sin. 57 6277 (in Chinese)[陈钊, 陈长乐, 温晓莉, 文军 2008 57 6277]

    [12]

    Gu B, Zhang F S, Huang Y G, Fang X 2010 Chin. Phys. B 19 030101

    [13]

    Font J, Muntasell J 1994 Materials Research Bulletin 29 1091

  • [1]

    Wang X W, Xu H H 2011 Acta Phys. Sin. 60 030507 (in Chinese)[王小伍, 徐海红 2011 60 030507]

    [2]

    Feng H Y, Liu X D, He SH M, Wu K ZH, Zhang J L 1999 Acta Physico-Chimica Sinica 15 850 (in Chinese)[冯海燕, 刘晓地, 何书美, 武克忠, 张建玲 1999 物理化学学报 15 850]

    [3]

    Sturz L, Witusiewicz V T, Hecht U, Rex S 2004 Journal of Crystal Growth 270 273

    [4]

    Barrio M, Lo'pez D O, Ll J, Negrier T P, Haget Y 1996 Journal of Solid State Chemistry 124 29

    [5]

    Dhanesh Chandra, Raja Chellappa, Wen-Ming Chien 2005 Journal of Physics and Chemistry of Solids 66 235

    [6]

    Zhang ZH H, Han K, Li H P, Tang G, Wu Y X, Wang H T, Bai L 2008 Acta Phys. Sin. 57 3160 (in Chinese)[张兆慧, 韩奎, 李海鹏, 唐刚, 吴玉喜, 王洪涛, 白磊 2008 57 3160]

    [7]

    Barrio M, Font J, Muntasell J, Navarro J, Ll Tamarit J 1998 Solar Energy Materials 18 109

    [8]

    Ji Z H, Zeng X H, Cen J P, Tan M Q 2010 Acta Phys. Sin. 59 1219 (in Chinese)[季正华, 曾祥华, 岑洁萍, 谭明秋 2010 59 1219]

    [9]

    Bettina Granzow 1996 Journal of Molecular Structure 381 127

    [10]

    Benson D K, Burrows R W, Webb J D 1986 Solar Energy Materials 13 133

    [11]

    Chen Z H, Chen C H L, Wen X L, Wen J 2008 Acta Phys. Sin. 57 6277 (in Chinese)[陈钊, 陈长乐, 温晓莉, 文军 2008 57 6277]

    [12]

    Gu B, Zhang F S, Huang Y G, Fang X 2010 Chin. Phys. B 19 030101

    [13]

    Font J, Muntasell J 1994 Materials Research Bulletin 29 1091

  • [1] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221725
    [2] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究.  , 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [3] 邱梓恒, AhmedYousif Ghazal, 龙金友, 张嵩. 三乙胺分子构象与红外光谱的理论研究.  , 2022, 71(10): 103601. doi: 10.7498/aps.71.20220123
    [4] 施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林. 特丁基对苯二酚的光谱及密度泛函研究.  , 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [5] 段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智. 水的氢键网络动力学与其太赫兹频谱的关系.  , 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [6] 秦晓玲, 朱栩量, 曹靖雯, 王浩诚, 张鹏. 冰的氢键振动研究.  , 2021, 70(14): 146301. doi: 10.7498/aps.70.20210013
    [7] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱.  , 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [8] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究.  , 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [9] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究.  , 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [10] 王安静, 方勇华, 李大成, 崔方晓, 吴军, 刘家祥, 李扬裕, 赵彦东. 面阵探测下的污染云团红外光谱仿真.  , 2017, 66(11): 114203. doi: 10.7498/aps.66.114203
    [11] 刘江平, 黎军, 刘元琼, 雷海乐, 韦建军. 低温下氘分子红外吸收特性研究.  , 2014, 63(2): 023301. doi: 10.7498/aps.63.023301
    [12] 刘江平, 毕鹏, 雷海乐, 黎军, 韦建军. 近三相点温度低温固体氘的红外吸收谱.  , 2013, 62(16): 163301. doi: 10.7498/aps.62.163301
    [13] 李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, 储修祥. 甘氨酸色氨酸寡肽链的红外光谱的密度泛函研究.  , 2013, 62(15): 156103. doi: 10.7498/aps.62.156103
    [14] 孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋宝安, 沈祥, 徐铁峰. PbI2对远红外Te基硫系玻璃光学性能的影响.  , 2011, 60(11): 114212. doi: 10.7498/aps.60.114212
    [15] 刘晓东, 陶万军, 郑旭光, 萩原雅人, 孟冬冬, 张森林, 郭其新. 磁几何阻挫材料羟基氯化钴的中红外光谱特征.  , 2011, 60(3): 037803. doi: 10.7498/aps.60.037803
    [16] 王小伍, 徐海红. 多元醇固—固相变机理的研究.  , 2011, 60(3): 030507. doi: 10.7498/aps.60.030507
    [17] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响.  , 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [18] 毕鹏, 刘元琼, 唐永建, 杨向东, 雷海乐. 液氢平面低温冷冻靶的红外吸收谱.  , 2010, 59(11): 7531-7534. doi: 10.7498/aps.59.7531
    [19] 赵明文, 夏曰源, 马玉臣, 刘向东, 英敏菊. 非迭代冻结密度近似方法在计算氢键相互作用的合理性研究.  , 2002, 51(11): 2440-2445. doi: 10.7498/aps.51.2440
    [20] 凌志华. 垂直排列液晶盒中反铁电液晶TFMHxPOCBC-D2偏振红外光谱研究.  , 2001, 50(2): 227-232. doi: 10.7498/aps.50.227
计量
  • 文章访问数:  6812
  • PDF下载量:  707
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-10
  • 修回日期:  2014-03-25
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map