-
为增强晶体硅太阳电池的光利用率, 提高光电转换效率, 研究了硅纳米线阵列的光学散射性质. 运用严格耦合波理论对硅纳米线阵列在310—1127 nm波段的反射率进行了模拟计算, 用田口方法对硅纳米线阵列的表面传输效率进行了优化. 结果表明, 当硅纳米线阵列的周期为50 nm, 占空比为0.6, 高度约1000 nm时减反射效果最佳; 该结构在上述波段的平均反射率约为2%, 且在较大入射角度范围保持不变. 采用金属催化化学腐蚀法, 于室温、室压条件下在单晶硅表面制备周期为60 nm,占空比为0.53, 高度为500 nm的硅纳米线阵列结构, 其反射率的实验测试结果与计算模拟值相符, 在上述波段的平均反射率为4%—5%, 相对于单晶硅35%左右的反射率, 减反射效果明显. 这种减反射微结构能够在降低太阳电池成本的同时有效减小单晶硅表面的光反射损失, 提高光电转换效率.In order to trap more sunlight onto the crystalline silicon solar cell and improve the photo-electric conversion efficiency, it is very important to study the optical scattering properties of silicon nanowire arrays on silicon wafer. The rigorous coupled wave analysis method is used for optical simulation, and the Taguchi method is used for efficient optimization. The simulation results show that at the above-mentioned wavelengths the reflectance of the optimized structure is less than 2%, and also able to achieve the wide-angle antireflection. At room temperature and ambient pressure, the silicon nanowire arrays each with a period of 50 nm, duty ratio of 0.6 and height of 1000 nm are successfully prepared on mono-crystalline Si wafers using a novel metal-catalyzed chemical etching technique, the reflectance test results are consistent with simulation values. The average reflectance of the optimized structure over the above-mentioned wavelength range is 4%-5%, showing that the antireflection effect is obvious compared with the reflectivity of about 35% of the single crystal silicon. The minus reflection microstructures reduce the sun battery microstructure costs, at the same time, reduce the monocrystalline silicon surface light reflecting loss, improve the photoelectric conversion efficiency.
-
Keywords:
- antireflection /
- silicon nanowire arrays /
- rigorous coupled-wave analysis /
- metal-assisted chemical etching
[1] Di D W, Cao Z Y, Li X W, Xie H L 2010 Solar Cells Operating Principles, Technology and System Applications (1st Edn.) (Shanghai: Shanghai Jiao Tong University Press) p 26 (in Chinese) [狄大卫,曹昭阳, 李秀文, 谢鸿礼 2010 太阳能电池工作原理、技术和系统应用 (第一版) (上海: 上海交通大学出版社) 第26页]
[2] Liang J W 2011 Solar Cells: Materials, Manufacture and Operation (1st Edn.) (Beijing: China Machine Press) p301 (in Chinese) [梁骏吾 2011 太阳电池: 材料、制备工艺及检测 (第一版) (北京: 机械工业出版社) 第301页]
[3] Yu Z N, Gao H, Wu W, Ge H X, Chou S Y 2003 J. Vac. Sci. Technol. B 21 2874
[4] Wang N, Zhu Y, Wei W, Chen J J, Li P, Wen Y M 2012 Acta Phys. Sin. 61 038801 (in Chinese) [王宁, 朱永, 韦玮, 陈建君, 李平, 文玉梅 2012 61 038801]
[5] Bernhard C G 1967 Endeavour 26 79
[6] Clapham P B, Hutley M C 1973 Nature 244 281
[7] Yun J L, Douglas S R, David W P, Bonnie B M, Julia W P H 2008 Nano. Lett. 8 1501
[8] Sun C H, Jiang P, Jiang B 2008 Appl. Phys. Lett. 92 061112
[9] Yang G G 2008 Micro-optics And System (1st Edn.) (Hangzhou: Zhejiang University Press) p30 (in Chinese) [杨国光 2008 微光学与系统 (第一版) (杭州: 浙江大学出版社) 第30页]
[10] Liu S Y, Gu H Y, Zhang C W, Shen H W 2008 Acta Phys. Sin. 57 5996 (in Chinese) [刘世元, 顾华勇, 张传维, 沈宏伟 2008 57 5996]
[11] Kong W J, Wang S H, Wei S J, Yun M J, Zhang W F, Wang X J, Zhang M M 2011 Acta Phys. Sin. 60 114214 (in Chinese) [孔伟金, 王书浩, 魏世杰, 云茂金, 张文飞, 王心洁, 张蒙蒙 2011 60 114214]
[12] Roy R 1999 A Primer on the Taguchi Method (1st Edn.) (Ann Arbor: Van Nostrand Reinhold) p187
[13] Wu Y, Hu J J, Xu Y 2006 Acta Energiae Solaris Sinica 27 811 (in Chinese) [吴茵, 胡崛隽, 许颖 2006 太阳能学报 27 811]
[14] Liu Y S, Yang W H, Zhu Y Y, Chen J, Yang Z L, Yang J H 2009 Acta Phys. Sin. 58 4992 (in Chinese) [刘永生, 杨文华, 朱艳燕, 陈 静, 杨正龙, 杨金焕 2009 58 4992]
[15] Zhou J, Sun Y T, Sun T T, Liu X, Song W J 2011 Acta Phys. Sin. 60 088802 (in Chinese) [周骏, 孙永堂, 孙铁囤, 刘晓, 宋伟杰 2011 60 088802]
[16] Baker K M 1999 Appl. Opt. 38 352
-
[1] Di D W, Cao Z Y, Li X W, Xie H L 2010 Solar Cells Operating Principles, Technology and System Applications (1st Edn.) (Shanghai: Shanghai Jiao Tong University Press) p 26 (in Chinese) [狄大卫,曹昭阳, 李秀文, 谢鸿礼 2010 太阳能电池工作原理、技术和系统应用 (第一版) (上海: 上海交通大学出版社) 第26页]
[2] Liang J W 2011 Solar Cells: Materials, Manufacture and Operation (1st Edn.) (Beijing: China Machine Press) p301 (in Chinese) [梁骏吾 2011 太阳电池: 材料、制备工艺及检测 (第一版) (北京: 机械工业出版社) 第301页]
[3] Yu Z N, Gao H, Wu W, Ge H X, Chou S Y 2003 J. Vac. Sci. Technol. B 21 2874
[4] Wang N, Zhu Y, Wei W, Chen J J, Li P, Wen Y M 2012 Acta Phys. Sin. 61 038801 (in Chinese) [王宁, 朱永, 韦玮, 陈建君, 李平, 文玉梅 2012 61 038801]
[5] Bernhard C G 1967 Endeavour 26 79
[6] Clapham P B, Hutley M C 1973 Nature 244 281
[7] Yun J L, Douglas S R, David W P, Bonnie B M, Julia W P H 2008 Nano. Lett. 8 1501
[8] Sun C H, Jiang P, Jiang B 2008 Appl. Phys. Lett. 92 061112
[9] Yang G G 2008 Micro-optics And System (1st Edn.) (Hangzhou: Zhejiang University Press) p30 (in Chinese) [杨国光 2008 微光学与系统 (第一版) (杭州: 浙江大学出版社) 第30页]
[10] Liu S Y, Gu H Y, Zhang C W, Shen H W 2008 Acta Phys. Sin. 57 5996 (in Chinese) [刘世元, 顾华勇, 张传维, 沈宏伟 2008 57 5996]
[11] Kong W J, Wang S H, Wei S J, Yun M J, Zhang W F, Wang X J, Zhang M M 2011 Acta Phys. Sin. 60 114214 (in Chinese) [孔伟金, 王书浩, 魏世杰, 云茂金, 张文飞, 王心洁, 张蒙蒙 2011 60 114214]
[12] Roy R 1999 A Primer on the Taguchi Method (1st Edn.) (Ann Arbor: Van Nostrand Reinhold) p187
[13] Wu Y, Hu J J, Xu Y 2006 Acta Energiae Solaris Sinica 27 811 (in Chinese) [吴茵, 胡崛隽, 许颖 2006 太阳能学报 27 811]
[14] Liu Y S, Yang W H, Zhu Y Y, Chen J, Yang Z L, Yang J H 2009 Acta Phys. Sin. 58 4992 (in Chinese) [刘永生, 杨文华, 朱艳燕, 陈 静, 杨正龙, 杨金焕 2009 58 4992]
[15] Zhou J, Sun Y T, Sun T T, Liu X, Song W J 2011 Acta Phys. Sin. 60 088802 (in Chinese) [周骏, 孙永堂, 孙铁囤, 刘晓, 宋伟杰 2011 60 088802]
[16] Baker K M 1999 Appl. Opt. 38 352
计量
- 文章访问数: 8809
- PDF下载量: 995
- 被引次数: 0