搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅纳米线/氧化钒纳米棒复合材料的制备与气敏性能研究

张玮祎 胡明 刘星 李娜 闫文君

引用本文:
Citation:

硅纳米线/氧化钒纳米棒复合材料的制备与气敏性能研究

张玮祎, 胡明, 刘星, 李娜, 闫文君

Synthesis and gas-sensing properties of the silicon nanowires/vanadium oxide nanorods composite

Zhang Wei-Yi, Hu Ming, Liu Xing, Li Na, Yan Wen-Jun
PDF
导出引用
  • 采用纳米球光刻和金属辅助刻蚀法以p型单晶硅片制备了硅纳米线阵列, 并以此作为基底, 通过溅射不同时长的金属钒薄膜并进行热退火氧化处理, 制备出硅纳米线/氧化钒纳米棒复合材料. 采用扫描电子显微镜和X射线衍射仪表征了该复合材料的微观特性, 结果表明该结构增大了材料的比表面积, 有利于气体传感, 并且镀膜时间对后续生长的氧化钒纳米棒形貌有明显影响. 采用静态配气法在室温下测试了该复合材料对NO2的气敏性能, 气敏测试结果表明沉积钒膜的时间对复合材料的气敏性能影响较大. 当选择合适的镀膜时间时, 适量氧化钒纳米棒增加了材料表面积并形成大量pn结结构, 相比纯硅纳米线对NO2气体的灵敏度有明显提升, 且在室温下表现出优良的选择性. 同时, 对气敏机理做了定性解释, 认为硅纳米线与氧化钒纳米棒之间形成的pn结及能带结构在接触NO2 时的动态变化是其气敏响应提升的主要机制.
    As air pollution is becoming more and more serious in recent years, gas-sensing devices have attracted intensive attention. In particular, NO2 is one of the most toxic gases in the atmosphere, which tends to produce acid rain and photochemical smog. Thus, there is a strong demand of cheap, reliable and sensitive gas sensors targeting NO2. Gas sensors fabricated on silicon substrates with room-temperature operation are very promising in power saving, integrated circuit processing and portable detectors. More important, the silicon nanowires (SiNWs)-based devices are compatible with very large scale integration processes and complementary metal oxide semiconductor technologies. In the present work, the novel nanocomposite structure of (SiNWs)/vanadium oxide (V2O5) nanorods for NO2 detection is successfully synthesized. The SiNWs are fabricated by a combination of nanosphere lithography and metal-assisted chemical etching. Vanadium films are deposited on SiNWs by DC magnetron sputtering, and then V2O5 nanorods are synthesized with subsequent thermal annealing process for full oxidation in air. The morphology and crystal structure of product obtained are characterized by field-emission scanning electron microscopy and X-ray diffraction. The characterization results indicate that V2O5 nanorods are uniformly distributed on the surfaces of SiNWs. The increased specific surface area of SiNWs/V2O5 nanocomposite provides more adsorption sites and diffusion conduits for gas molecules. Therefore, the novel structure of the nanocomposite is conducive to gas-sensing. In addition, the sputtering time has an obvious influence on the morphology of vanadium oxide. With the increase of the sputtering time, the specific surface area and the number of p-n heterojunctions formed in the nanocomposite are both less than those of nanocomposite with appropriate sputtering time. The gas-sensing properties are examined by measuring the resistance change towards 0.5-4 ppm NO2 gas at room temperature by the static volumetric method. Results show that the nanocomposite with shorter deposition time has better gas-sensing properties to low-concentration NO2 gas than those of bare SiNWs and nanocomposite with longer deposition time. On the contrary, the responses of the nanocomposite to other high-concentration reducing gases are very low, indicating good selectivity. The enhancement in gas sensing properties may be attributed to the change in width of the space charge region, which is similar to the behavior of p-n junction under forward bias, in the high-density p-n heterojunction structure formed between SiNWs and V2O5 nanorods. In conclusion, these results demonstrate that the SiNWs/V2O5 nanocomposite has great potential for future NO2 gas detection applications with low consumption and good performance.
      通信作者: 张玮祎, zhangweiyi@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61274074, 61271070)和天津市自然科学基金(批准号: 11JCZDJC15300)资助的课题.
      Corresponding author: Zhang Wei-Yi, zhangweiyi@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274074, 61271070), and Tianjin Key Research Program of Application Foundation and Advanced Technology, China (Grant No. 11JCZDJC15300).
    [1]

    Agarwal R, Lieber C M 2006 Appl. Phys. A 85 209

    [2]

    Sivakov V, Andr G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen S H 2009 Nano Lett. 9 1549

    [3]

    Krivitsky V, Hsiung L C, Lichtenstein A, Brudnik B, Kantaev R, Elnathan R, Pevzner A, Khatchtourints A, Patolsky F 2012 Nano Lett. 12 4748

    [4]

    Cao A, Sudhlter E J R, de Smet L C P M 2014 Sensors 14 245

    [5]

    Mescher M, de Smet L C P M, Sudhlter E J R, Klootwijk J H 2013 J. Nanosci. Nanotechnol. 13 5649

    [6]

    Stern E, Klemic J F, Routenberg D A, Wyrembak P N, Turner-Evans D B, Hamilton A D, LaVan D A, Fahmy T M, Reed M A 2007 Nature 445 519

    [7]

    Wu Y, Yang P 2001 J. Am. Chem. Soc. 123 3165

    [8]

    Shao M, Ma D D D, Lee S T 2010 Eur. J. Inorg. Chem. 27 4264

    [9]

    She J C, Deng S Z, Xu N S, Yao R H, Chen J 2006 Appl. Phys. Lett. 88 013112

    [10]

    Huang Z, Fang H, Zhu J 2007 Adv. Mater. 19 744

    [11]

    Liu L, Wang Y T 2015 Acta Phys. Sin. 64 148201 (in Chinese) [刘琳, 王永田 2015 64 148201]

    [12]

    Peng K Q, Wang X, Lee S T 2009 Appl. Phys. Lett. 95 243112

    [13]

    Zeng P, Zhang P, Hu M, Ma S Y, Yan W J 2014 Chin. Phys. B 23 058103

    [14]

    Noh J, Kim H, Kim B, Lee E, Cho H, Lee W 2011 J. Mater. Chem. 21 15935

    [15]

    Jin W, Chen W, Lu Y, Zhao C, Dai Y 2011 J. Nanosci. Nanotechnol. 11 10834

    [16]

    Modafferi V, Panzera G, Donato A, Antonucci P L, Cannilla C, Donato N, Spadaro D, Neri G 2012 Sens. Actuators B: Chem. 163 61

    [17]

    Yan D L, Hu M, Li S Y, Liang J R, Wu Y Q, Ma S Y 2014 Electrochim. Acta 115 297

    [18]

    Li Y, Lenigk R, Wu X, Gruendig B, Dong S, Renneberg R 1998 Electroanalysis 10 671

    [19]

    Hu M, Liu Q L, Jia D L, Li M D 2013 Acta Phys. Sin. 62 057102 (in Chinese) [胡明, 刘青林, 贾丁立, 李明达 2013 62 057102]

    [20]

    Li M, Hu M, Jia D, Ma S, Yan W 2013 Sens. Actuators B: Chem. 186 140

    [21]

    Tiong T Y, Dee C F, Hamzah A A, Majlis B Y, Rahman S A 2014 Sens. Actuators B: Chem. 202 1322

    [22]

    Mane A T, Navale S T, Shashwati S, Aswal D K, Gupta S K, Patil V B 2015 Org. Electron. 16 195

    [23]

    Mane A T, Navale S T, Patil V B 2015 Org. Electron. 19 15

    [24]

    Gao C, Xu Z C, Deng S R, Wan J, Chen Y, Liu R, Huq E, Qu X P 2011 Microelectron. Eng. 88 2100

  • [1]

    Agarwal R, Lieber C M 2006 Appl. Phys. A 85 209

    [2]

    Sivakov V, Andr G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen S H 2009 Nano Lett. 9 1549

    [3]

    Krivitsky V, Hsiung L C, Lichtenstein A, Brudnik B, Kantaev R, Elnathan R, Pevzner A, Khatchtourints A, Patolsky F 2012 Nano Lett. 12 4748

    [4]

    Cao A, Sudhlter E J R, de Smet L C P M 2014 Sensors 14 245

    [5]

    Mescher M, de Smet L C P M, Sudhlter E J R, Klootwijk J H 2013 J. Nanosci. Nanotechnol. 13 5649

    [6]

    Stern E, Klemic J F, Routenberg D A, Wyrembak P N, Turner-Evans D B, Hamilton A D, LaVan D A, Fahmy T M, Reed M A 2007 Nature 445 519

    [7]

    Wu Y, Yang P 2001 J. Am. Chem. Soc. 123 3165

    [8]

    Shao M, Ma D D D, Lee S T 2010 Eur. J. Inorg. Chem. 27 4264

    [9]

    She J C, Deng S Z, Xu N S, Yao R H, Chen J 2006 Appl. Phys. Lett. 88 013112

    [10]

    Huang Z, Fang H, Zhu J 2007 Adv. Mater. 19 744

    [11]

    Liu L, Wang Y T 2015 Acta Phys. Sin. 64 148201 (in Chinese) [刘琳, 王永田 2015 64 148201]

    [12]

    Peng K Q, Wang X, Lee S T 2009 Appl. Phys. Lett. 95 243112

    [13]

    Zeng P, Zhang P, Hu M, Ma S Y, Yan W J 2014 Chin. Phys. B 23 058103

    [14]

    Noh J, Kim H, Kim B, Lee E, Cho H, Lee W 2011 J. Mater. Chem. 21 15935

    [15]

    Jin W, Chen W, Lu Y, Zhao C, Dai Y 2011 J. Nanosci. Nanotechnol. 11 10834

    [16]

    Modafferi V, Panzera G, Donato A, Antonucci P L, Cannilla C, Donato N, Spadaro D, Neri G 2012 Sens. Actuators B: Chem. 163 61

    [17]

    Yan D L, Hu M, Li S Y, Liang J R, Wu Y Q, Ma S Y 2014 Electrochim. Acta 115 297

    [18]

    Li Y, Lenigk R, Wu X, Gruendig B, Dong S, Renneberg R 1998 Electroanalysis 10 671

    [19]

    Hu M, Liu Q L, Jia D L, Li M D 2013 Acta Phys. Sin. 62 057102 (in Chinese) [胡明, 刘青林, 贾丁立, 李明达 2013 62 057102]

    [20]

    Li M, Hu M, Jia D, Ma S, Yan W 2013 Sens. Actuators B: Chem. 186 140

    [21]

    Tiong T Y, Dee C F, Hamzah A A, Majlis B Y, Rahman S A 2014 Sens. Actuators B: Chem. 202 1322

    [22]

    Mane A T, Navale S T, Shashwati S, Aswal D K, Gupta S K, Patil V B 2015 Org. Electron. 16 195

    [23]

    Mane A T, Navale S T, Patil V B 2015 Org. Electron. 19 15

    [24]

    Gao C, Xu Z C, Deng S R, Wan J, Chen Y, Liu R, Huq E, Qu X P 2011 Microelectron. Eng. 88 2100

  • [1] 陈进龙, 陶然, 李冲, 张健磊, 付琛, 罗景庭. 基于SnS2/In2O3的气体传感器及其室温下高性能NO2检测.  , 2024, 73(10): 106801. doi: 10.7498/aps.73.20231554
    [2] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展.  , 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [3] 刘志福, 李培, 程铁栋, 黄文. 铁掺杂多孔氧化铟的NO2传感特性.  , 2020, 69(24): 248101. doi: 10.7498/aps.69.20200956
    [4] 李东珂, 贺冰彦, 陈坤权, 皮明雨, 崔玉亭, 张丁可. Au纳米颗粒负载WO3纳米花复合结构的二甲苯气敏性能.  , 2019, 68(19): 198101. doi: 10.7498/aps.68.20190678
    [5] 李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武. 外电场极化对纳米氧化锌拉曼活性及气敏性能的影响.  , 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [6] 卢顺顺, 张晋敏, 郭笑天, 高廷红, 田泽安, 何帆, 贺晓金, 吴宏仙, 谢泉. 碳纳米管包裹的硅纳米线复合结构的热稳定性研究.  , 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [7] 刘进, 邹莹, 司福祺, 周海金, 窦科, 王煜, 刘文清. 基于差分吸收光谱技术的大气痕量气体二维观测方法.  , 2015, 64(16): 164209. doi: 10.7498/aps.64.164209
    [8] 刘琳, 王永田. 光照对HF/Fe(NO3)3溶液中制备硅纳米线的作用研究.  , 2015, 64(14): 148201. doi: 10.7498/aps.64.148201
    [9] 刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清. 机载成像差分吸收光谱技术测量区域NO2二维分布研究.  , 2015, 64(3): 034217. doi: 10.7498/aps.64.034217
    [10] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究.  , 2015, 64(13): 137102. doi: 10.7498/aps.64.137102
    [11] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究.  , 2015, 64(13): 137104. doi: 10.7498/aps.64.137104
    [12] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究.  , 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [13] 胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋. 微流控技术制备ZnO纳米线阵列及其气敏特性.  , 2014, 63(20): 207102. doi: 10.7498/aps.63.207102
    [14] 王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒. 多轴差分吸收光谱仪反演大气NO2的比对试验.  , 2013, 62(5): 054206. doi: 10.7498/aps.62.054206
    [15] 秦玉香, 王飞, 沈万江, 胡明. 氧化钨纳米线-单壁碳纳米管复合型气敏元件的室温NO2敏感性能与机理.  , 2012, 61(5): 057301. doi: 10.7498/aps.61.057301
    [16] 梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳. 表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究.  , 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [17] 王焯如, 周斌, 王珊珊, 杨素娜. 应用多光路主动差分光学吸收光谱仪观测大气污染物的空间分布.  , 2011, 60(6): 060703. doi: 10.7498/aps.60.060703
    [18] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究.  , 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [19] 张贵银, 靳一东. NO2分子的光学-光学双色双共振多光子离化谱.  , 2008, 57(1): 132-136. doi: 10.7498/aps.57.132
    [20] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼.  , 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
计量
  • 文章访问数:  6841
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-07
  • 修回日期:  2016-02-02
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map