Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis and gas-sensing properties of the silicon nanowires/vanadium oxide nanorods composite

Zhang Wei-Yi Hu Ming Liu Xing Li Na Yan Wen-Jun

Citation:

Synthesis and gas-sensing properties of the silicon nanowires/vanadium oxide nanorods composite

Zhang Wei-Yi, Hu Ming, Liu Xing, Li Na, Yan Wen-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As air pollution is becoming more and more serious in recent years, gas-sensing devices have attracted intensive attention. In particular, NO2 is one of the most toxic gases in the atmosphere, which tends to produce acid rain and photochemical smog. Thus, there is a strong demand of cheap, reliable and sensitive gas sensors targeting NO2. Gas sensors fabricated on silicon substrates with room-temperature operation are very promising in power saving, integrated circuit processing and portable detectors. More important, the silicon nanowires (SiNWs)-based devices are compatible with very large scale integration processes and complementary metal oxide semiconductor technologies. In the present work, the novel nanocomposite structure of (SiNWs)/vanadium oxide (V2O5) nanorods for NO2 detection is successfully synthesized. The SiNWs are fabricated by a combination of nanosphere lithography and metal-assisted chemical etching. Vanadium films are deposited on SiNWs by DC magnetron sputtering, and then V2O5 nanorods are synthesized with subsequent thermal annealing process for full oxidation in air. The morphology and crystal structure of product obtained are characterized by field-emission scanning electron microscopy and X-ray diffraction. The characterization results indicate that V2O5 nanorods are uniformly distributed on the surfaces of SiNWs. The increased specific surface area of SiNWs/V2O5 nanocomposite provides more adsorption sites and diffusion conduits for gas molecules. Therefore, the novel structure of the nanocomposite is conducive to gas-sensing. In addition, the sputtering time has an obvious influence on the morphology of vanadium oxide. With the increase of the sputtering time, the specific surface area and the number of p-n heterojunctions formed in the nanocomposite are both less than those of nanocomposite with appropriate sputtering time. The gas-sensing properties are examined by measuring the resistance change towards 0.5-4 ppm NO2 gas at room temperature by the static volumetric method. Results show that the nanocomposite with shorter deposition time has better gas-sensing properties to low-concentration NO2 gas than those of bare SiNWs and nanocomposite with longer deposition time. On the contrary, the responses of the nanocomposite to other high-concentration reducing gases are very low, indicating good selectivity. The enhancement in gas sensing properties may be attributed to the change in width of the space charge region, which is similar to the behavior of p-n junction under forward bias, in the high-density p-n heterojunction structure formed between SiNWs and V2O5 nanorods. In conclusion, these results demonstrate that the SiNWs/V2O5 nanocomposite has great potential for future NO2 gas detection applications with low consumption and good performance.
      Corresponding author: Zhang Wei-Yi, zhangweiyi@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274074, 61271070), and Tianjin Key Research Program of Application Foundation and Advanced Technology, China (Grant No. 11JCZDJC15300).
    [1]

    Agarwal R, Lieber C M 2006 Appl. Phys. A 85 209

    [2]

    Sivakov V, Andr G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen S H 2009 Nano Lett. 9 1549

    [3]

    Krivitsky V, Hsiung L C, Lichtenstein A, Brudnik B, Kantaev R, Elnathan R, Pevzner A, Khatchtourints A, Patolsky F 2012 Nano Lett. 12 4748

    [4]

    Cao A, Sudhlter E J R, de Smet L C P M 2014 Sensors 14 245

    [5]

    Mescher M, de Smet L C P M, Sudhlter E J R, Klootwijk J H 2013 J. Nanosci. Nanotechnol. 13 5649

    [6]

    Stern E, Klemic J F, Routenberg D A, Wyrembak P N, Turner-Evans D B, Hamilton A D, LaVan D A, Fahmy T M, Reed M A 2007 Nature 445 519

    [7]

    Wu Y, Yang P 2001 J. Am. Chem. Soc. 123 3165

    [8]

    Shao M, Ma D D D, Lee S T 2010 Eur. J. Inorg. Chem. 27 4264

    [9]

    She J C, Deng S Z, Xu N S, Yao R H, Chen J 2006 Appl. Phys. Lett. 88 013112

    [10]

    Huang Z, Fang H, Zhu J 2007 Adv. Mater. 19 744

    [11]

    Liu L, Wang Y T 2015 Acta Phys. Sin. 64 148201 (in Chinese) [刘琳, 王永田 2015 64 148201]

    [12]

    Peng K Q, Wang X, Lee S T 2009 Appl. Phys. Lett. 95 243112

    [13]

    Zeng P, Zhang P, Hu M, Ma S Y, Yan W J 2014 Chin. Phys. B 23 058103

    [14]

    Noh J, Kim H, Kim B, Lee E, Cho H, Lee W 2011 J. Mater. Chem. 21 15935

    [15]

    Jin W, Chen W, Lu Y, Zhao C, Dai Y 2011 J. Nanosci. Nanotechnol. 11 10834

    [16]

    Modafferi V, Panzera G, Donato A, Antonucci P L, Cannilla C, Donato N, Spadaro D, Neri G 2012 Sens. Actuators B: Chem. 163 61

    [17]

    Yan D L, Hu M, Li S Y, Liang J R, Wu Y Q, Ma S Y 2014 Electrochim. Acta 115 297

    [18]

    Li Y, Lenigk R, Wu X, Gruendig B, Dong S, Renneberg R 1998 Electroanalysis 10 671

    [19]

    Hu M, Liu Q L, Jia D L, Li M D 2013 Acta Phys. Sin. 62 057102 (in Chinese) [胡明, 刘青林, 贾丁立, 李明达 2013 62 057102]

    [20]

    Li M, Hu M, Jia D, Ma S, Yan W 2013 Sens. Actuators B: Chem. 186 140

    [21]

    Tiong T Y, Dee C F, Hamzah A A, Majlis B Y, Rahman S A 2014 Sens. Actuators B: Chem. 202 1322

    [22]

    Mane A T, Navale S T, Shashwati S, Aswal D K, Gupta S K, Patil V B 2015 Org. Electron. 16 195

    [23]

    Mane A T, Navale S T, Patil V B 2015 Org. Electron. 19 15

    [24]

    Gao C, Xu Z C, Deng S R, Wan J, Chen Y, Liu R, Huq E, Qu X P 2011 Microelectron. Eng. 88 2100

  • [1]

    Agarwal R, Lieber C M 2006 Appl. Phys. A 85 209

    [2]

    Sivakov V, Andr G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen S H 2009 Nano Lett. 9 1549

    [3]

    Krivitsky V, Hsiung L C, Lichtenstein A, Brudnik B, Kantaev R, Elnathan R, Pevzner A, Khatchtourints A, Patolsky F 2012 Nano Lett. 12 4748

    [4]

    Cao A, Sudhlter E J R, de Smet L C P M 2014 Sensors 14 245

    [5]

    Mescher M, de Smet L C P M, Sudhlter E J R, Klootwijk J H 2013 J. Nanosci. Nanotechnol. 13 5649

    [6]

    Stern E, Klemic J F, Routenberg D A, Wyrembak P N, Turner-Evans D B, Hamilton A D, LaVan D A, Fahmy T M, Reed M A 2007 Nature 445 519

    [7]

    Wu Y, Yang P 2001 J. Am. Chem. Soc. 123 3165

    [8]

    Shao M, Ma D D D, Lee S T 2010 Eur. J. Inorg. Chem. 27 4264

    [9]

    She J C, Deng S Z, Xu N S, Yao R H, Chen J 2006 Appl. Phys. Lett. 88 013112

    [10]

    Huang Z, Fang H, Zhu J 2007 Adv. Mater. 19 744

    [11]

    Liu L, Wang Y T 2015 Acta Phys. Sin. 64 148201 (in Chinese) [刘琳, 王永田 2015 64 148201]

    [12]

    Peng K Q, Wang X, Lee S T 2009 Appl. Phys. Lett. 95 243112

    [13]

    Zeng P, Zhang P, Hu M, Ma S Y, Yan W J 2014 Chin. Phys. B 23 058103

    [14]

    Noh J, Kim H, Kim B, Lee E, Cho H, Lee W 2011 J. Mater. Chem. 21 15935

    [15]

    Jin W, Chen W, Lu Y, Zhao C, Dai Y 2011 J. Nanosci. Nanotechnol. 11 10834

    [16]

    Modafferi V, Panzera G, Donato A, Antonucci P L, Cannilla C, Donato N, Spadaro D, Neri G 2012 Sens. Actuators B: Chem. 163 61

    [17]

    Yan D L, Hu M, Li S Y, Liang J R, Wu Y Q, Ma S Y 2014 Electrochim. Acta 115 297

    [18]

    Li Y, Lenigk R, Wu X, Gruendig B, Dong S, Renneberg R 1998 Electroanalysis 10 671

    [19]

    Hu M, Liu Q L, Jia D L, Li M D 2013 Acta Phys. Sin. 62 057102 (in Chinese) [胡明, 刘青林, 贾丁立, 李明达 2013 62 057102]

    [20]

    Li M, Hu M, Jia D, Ma S, Yan W 2013 Sens. Actuators B: Chem. 186 140

    [21]

    Tiong T Y, Dee C F, Hamzah A A, Majlis B Y, Rahman S A 2014 Sens. Actuators B: Chem. 202 1322

    [22]

    Mane A T, Navale S T, Shashwati S, Aswal D K, Gupta S K, Patil V B 2015 Org. Electron. 16 195

    [23]

    Mane A T, Navale S T, Patil V B 2015 Org. Electron. 19 15

    [24]

    Gao C, Xu Z C, Deng S R, Wan J, Chen Y, Liu R, Huq E, Qu X P 2011 Microelectron. Eng. 88 2100

  • [1] Chen Jin-Long, Tao Ran, Li Chong, Zhang Jian-Lei, Fu Chen, Luo Jing-Ting. SnS2/In2O3 based gas sensors and its high performance of detecting NO2 at room temperature. Acta Physica Sinica, 2024, 73(10): 106801. doi: 10.7498/aps.73.20231554
    [2] Liu Xiao-Xuan, Sun Fei-Yang, Wu Ying, Yang Sheng-Yi, Zou Bing-Suo. Research progress of silicon nanowires array photodetectors. Acta Physica Sinica, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [3] Liu Zhi-Fu, Li Pei, Cheng Tie-Dong, Huang Wen. NO2 sensing properties of porous Fe-doped indium oxide. Acta Physica Sinica, 2020, 69(24): 248101. doi: 10.7498/aps.69.20200956
    [4] Li Dong-Ke, He Bing-Yan, Chen Kun-Quan, Pi Ming-Yu, Cui Yu-Ting, Zhang Ding-Ke. Xylene gas sensing performance of Au nanoparticlesloaded WO3 nanoflowers. Acta Physica Sinica, 2019, 68(19): 198101. doi: 10.7498/aps.68.20190678
    [5] Li Yan, Li Jiao, Chen Li-Li, Lian Xiao-Xue, Zhu Jun-Wu. Polarization effect of external electric field on Raman activity and gas sensing of nano zinc oxide. Acta Physica Sinica, 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [6] Lu Shun-Shun, Zhang Jin-Min, Guo Xiao-Tian, Gao Ting-Hong, Tian Ze-An, He Fan, He Xiao-Jin, Wu Hong-Xian, Xie Quan. Thermal stability of compound stucture of silicon nanowire encapsulated in carbon nanotubes. Acta Physica Sinica, 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [7] Liu Jin, Zou Ying, Si Fu-Qi, Zhou Hai-Jin, Dou Ke, Wang Yu, Liu Wen-Qing. Two-dimensional observation of atmospheric trace gases based on the differential optical absorption spectroscopy technique. Acta Physica Sinica, 2015, 64(16): 164209. doi: 10.7498/aps.64.164209
    [8] Liu Lin, Wang Yong-Tian. Investigation of photo-induced phenomenon in the silicon nanowires made by chemical etching in HF/Fe(NO3)3 solution. Acta Physica Sinica, 2015, 64(14): 148201. doi: 10.7498/aps.64.148201
    [9] Liu Jin, Si Fu-Qi, Zhou Hai-Jin, Zhao Ming-Jie, Dou Ke, Wang Yu, Liu Wen-Qing. Observation of two-dimensional distributions of NO2 with airborne Imaging DOAS technology. Acta Physica Sinica, 2015, 64(3): 034217. doi: 10.7498/aps.64.034217
    [10] Yan Da-Li, Li Shen-Yu, Liu Shi-Yu, Zhu Yun. Preparation and gas-sensing properties of the silver nanoparticles/porous silicon composite. Acta Physica Sinica, 2015, 64(13): 137102. doi: 10.7498/aps.64.137102
    [11] Yan Da-Li, Li Shen-Yu, Liu Shi-Yu, Zhu Yun. Preparation and gas-sensing properties of the silver nanoparticles/porous silicon composite. Acta Physica Sinica, 2015, 64(13): 137104. doi: 10.7498/aps.64.137104
    [12] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [13] Hu Jie, Deng Xiao, Sang Sheng-Bo, Li Peng-Wei, Li Gang, Zhang Wen-Dong. Fabrication and characteristics of ZnO nanowires array gas sensor based on microfluidics. Acta Physica Sinica, 2014, 63(20): 207102. doi: 10.7498/aps.63.207102
    [14] Wang Ting, Wang Pu-Cai, Yu Huan, Zhang Xing-Ying, Zhou Bin, Si Fu-Qi, Wang Shan-Shan, Bai Wen-Guang, Zhou Hai-Jin, Zhao Heng. Intercomparison of slant column measurements of NO2 by ground-based MAX-DOAS. Acta Physica Sinica, 2013, 62(5): 054206. doi: 10.7498/aps.62.054206
    [15] Qin Yu-Xiang, Wang Fei, Shen Wan-Jiang, Hu Ming. Room temperature NO2-sensing properties and mechanism of the sensors based on tungsten oxide nanowires/single-wall carbon nanotubes composites. Acta Physica Sinica, 2012, 61(5): 057301. doi: 10.7498/aps.61.057301
    [16] Liang Pei, Liu Yang, Wang Le, Wu Ke, Dong Qian-Min, Li Xiao-Yan. Investigation of the doping failure induced by DB in the SiNWs using first principles method. Acta Physica Sinica, 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [17] Wang Zhuo-Ru, Zhou Bin, Wang Shan-Shan, Yang Su-Na. Observation on the spatial distribution of air pollutants by active multi-axis differential optical absorption spectroscopy. Acta Physica Sinica, 2011, 60(6): 060703. doi: 10.7498/aps.60.060703
    [18] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [19] Zhang Gui-Yin, Jin Yi-Dong. Optical-optical double-color and double-resonance multiphoton ionization spectrum of NO2. Acta Physica Sinica, 2008, 57(1): 132-136. doi: 10.7498/aps.57.132
    [20] Zeng Xiang-Bo, Liao Xian-Bo, Wang Bo, Diao Hong-Wei, Dai Song-Tao, Xiang Xian-Bi, Chang Xiu-Lan, Xu Yan-Yue, Hu Zhi-Hua, Hao Hui-Ying, Kong Guang-Lin. Boron-doped silicon nanowires grown by plasmaenhanced chemical vapor deposition. Acta Physica Sinica, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
Metrics
  • Abstract views:  6871
  • PDF Downloads:  245
  • Cited By: 0
Publishing process
  • Received Date:  07 November 2015
  • Accepted Date:  02 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map