-
The development of high-performance thermoelectric materials can help solve the energy crisis in the future. Thin-film thermoelectric materials can meet the requirement for flexibility of wearable devices while supplying electrical power to them. In this study, high-quality Nb-doped SrTiO3 films (Nb:STO) with different thickness are prepared on SrTiO3 (STO) and La0.3Sr0.7Al0.65Ta0.35O3 (LSAT) substrates by pulsed laser deposition. The surface morphologies, crystal structures, and thermoelectric performances of the films are characterized. The results show that the thermoelectric performance of the strain-free film increase with thickness increasing. The power factor at room temperature increases by 187%. The Seebeck coefficient of the 144 nm-thick Nb:STO/LSAT sample with strain is greatly improved to
$265.95\;{\text{μ}}{\rm{V}}/{\rm{K}}$ at room temperature, which is likely to be due to the strain induced changes in the energy band of the thin film. The improvement of the thermoelectric performances of Nb:STO thin films by strain engineering provides a new approach to improving the thermoelectric properties of oxide thin films.-
Keywords:
- pulsed laser deposition /
- thermoelectricity /
- SrTiO3 /
- thin film
[1] Utlu Z, Hepbasli A 2007 Renew. Sustain. Energy Rev. 11 1
Google Scholar
[2] Zhang B, Wang J, Zou T, Zhang S, Yaer X, Ding N, Liu C, Miao L, Li Y, Wu Y 2015 J. Mater. Chem. C 3 11406
Google Scholar
[3] Gao W, Zhu Y, Wang Y, Yuan G, Liu J M 2020 J. Materiomics 6 1
Google Scholar
[4] Chiang C K, Fincher C R, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C, MacDiarmid A G 1977 Phys. Rev. Lett. 39 1098
Google Scholar
[5] Fan Z, Du D, Yu Z, Li P, Xia Y, Ouyang J 2016 ACS Appl. Mater. Interfaces 8 23204
Google Scholar
[6] Jalan B, Stemmer S 2010 Appl. Phys. Lett. 97 042106
Google Scholar
[7] Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K 2007 Nat. Mater. 6 129
Google Scholar
[8] Pu J, Kanahashi K, Cuong N T, Chen C H, Li L J, Okada S, Ohta H, Takenobu T 2016 Phys. Rev. B 94 014312
Google Scholar
[9] Li P, Li L, Zeng X C 2016 J. Mater. Chem. C 4 3106
Google Scholar
[10] Zhang X, Liu B, Liu S, Li J, Liu R, Wang P, Dong Q, Li S, Tian H, Li Q, Liu B 2021 J. Alloys Compd. 867 158923
Google Scholar
[11] Wang N, Li M, Xiao H, Gong H, Liu Z, Zu X, Qiao L 2019 Phys. Chem. Chem. Phys. 21 15097
Google Scholar
[12] Xu R, Huang J, Barnard E S, Hong S S, Singh P, Wong E K, Jansen T, Harbola V, Xiao J, Wang B Y, Crossley S, Lu D, Liu S, Hwang H Y 2020 Nat. Commun. 11 3141
Google Scholar
[13] Dong Z, Chen H, Qi M, Shen J, Liu W, Guo E, Li D, Zhang Y, Wu Z 2022 Laser Photonics Rev. 16 2100454
Google Scholar
[14] Tikhomirov O, Jiang H, Levy J 2002 Phys. Rev. Lett. 89 147601
Google Scholar
[15] Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758
Google Scholar
[16] Bhansali S, Khunsin W, Chatterjee A, Santiso J, Abad B, Martin-Gonzalez M, Jakob G, Sotomayor Torres C M, Chávez-Angel E 2019 Nanoscale Adv. 1 3647
Google Scholar
[17] Janotti A, Steiauf D, Van de Walle C G 2011 Phys. Rev. B 84 201304
Google Scholar
[18] Bellucci A, Mastellone M, Girolami M, Orlando S, Medici L, Mezzi A, Kaciulis S, Polini R, Trucchi D M 2017 Appl. Surf. Sci. 418 589
Google Scholar
[19] Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B 2001 Nature 413 597
Google Scholar
[20] Chen Z J, Zhou B Y, Li J X, Wen C L 2016 Appl. Surf. Sci. 386 389
Google Scholar
[21] Varghese T, Hollar C, Richardson J, Kempf N, Han C, Gamarachchi P, Estrada D, Mehta R J, Zhang Y 2016 Sci. Rep. 6 33135
Google Scholar
[22] Wunderlich W, Ohta H, Koumoto K 2009 Phys. B Condens. Matter 404 2202
Google Scholar
[23] Benthem K, Elsässer C, French R H 2001 J. Appl. Phys. 90 6156
Google Scholar
[24] Apreutesei M, Debord R, Bouras M, Regreny P, Botella C, Benamrouche A, Carretero-Genevrier A, Gazquez J, Grenet G, Pailhès S, Saint-Girons G, Bachelet R 2017 Sci. Technol. Adv. Mater. 18 430
Google Scholar
[25] Zhao T, Lu H B, Chen F, Dai S Y, Yang G Z, Chen Z H 2000 J. Cryst. Growth 212 451
Google Scholar
[26] Kumar S R S, Barasheed A Z, Alshareef H N 2013 ACS Appl. Mater. Interfaces 5 7268
Google Scholar
[27] Blennow P, Hagen A, Hansen K, Wallenberg L, Mogensen M 2008 Solid State Ion. 179 2047
Google Scholar
[28] Chan N H, Sharma R K, Smyth D M 1981 J. Electrochem. Soc. 128 1762
Google Scholar
[29] Culbertson C M, Flak A T, Yatskin M, Cheong P H Y, Cann D P, Dolgos M R 2020 Sci. Rep. 10 3729
Google Scholar
[30] Chatterjee A, Lan Z, Christensen D V, Bauitti F, Morata A, Chavez-Angel E, Sanna S, Castelli I E, Chen Y, Tarancon A, Pryds N 2022 Phys. Chem. Chem. Phys. 24 3741
Google Scholar
[31] Ohtomo A, Hwang H Y 2004 Appl. Phys. Lett. 84 1716
Google Scholar
[32] Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727
Google Scholar
[33] 许静, 何梓民, 杨文龙, 吴荣, 赖晓芳, 简基康 2022 71 197301
Google Scholar
Xu J, He Z M, Yang W L, Wu R, Lai X F, Jian J K 2022 Acta Phys. Sin. 71 197301
Google Scholar
[34] Matthews J, Blakeslee A 1974 J. Cryst. Growth 27 118
Google Scholar
[35] Wang T, Ganguly K, Marshall P, Xu P, Jalan B 2013 Appl. Phys. Lett. 103 212904
Google Scholar
[36] Zou D, Liu Y, Xie S, Lin J, Li J 2013 Chem. Phys. Lett. 586 159
Google Scholar
-
图 4 不同厚度Nb:STO/STO和Nb:STO/LSAT 薄膜在不同温度下的面内热电性能 (a) 电导率; (b) 塞贝克系数; (c) 功率因子; (d) 不同衬底、厚度薄膜的电导率对比
Figure 4. Temperature dependence of in-plane thermoelectric properties of Nb:STO/STO and Nb:STO/LSAT thin films with different thicknesses: (a) Conductivities; (b) Seebeck coefficients; (c) power factors; (d) conductivity of thin films with different thicknesses and substrates.
-
[1] Utlu Z, Hepbasli A 2007 Renew. Sustain. Energy Rev. 11 1
Google Scholar
[2] Zhang B, Wang J, Zou T, Zhang S, Yaer X, Ding N, Liu C, Miao L, Li Y, Wu Y 2015 J. Mater. Chem. C 3 11406
Google Scholar
[3] Gao W, Zhu Y, Wang Y, Yuan G, Liu J M 2020 J. Materiomics 6 1
Google Scholar
[4] Chiang C K, Fincher C R, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C, MacDiarmid A G 1977 Phys. Rev. Lett. 39 1098
Google Scholar
[5] Fan Z, Du D, Yu Z, Li P, Xia Y, Ouyang J 2016 ACS Appl. Mater. Interfaces 8 23204
Google Scholar
[6] Jalan B, Stemmer S 2010 Appl. Phys. Lett. 97 042106
Google Scholar
[7] Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K 2007 Nat. Mater. 6 129
Google Scholar
[8] Pu J, Kanahashi K, Cuong N T, Chen C H, Li L J, Okada S, Ohta H, Takenobu T 2016 Phys. Rev. B 94 014312
Google Scholar
[9] Li P, Li L, Zeng X C 2016 J. Mater. Chem. C 4 3106
Google Scholar
[10] Zhang X, Liu B, Liu S, Li J, Liu R, Wang P, Dong Q, Li S, Tian H, Li Q, Liu B 2021 J. Alloys Compd. 867 158923
Google Scholar
[11] Wang N, Li M, Xiao H, Gong H, Liu Z, Zu X, Qiao L 2019 Phys. Chem. Chem. Phys. 21 15097
Google Scholar
[12] Xu R, Huang J, Barnard E S, Hong S S, Singh P, Wong E K, Jansen T, Harbola V, Xiao J, Wang B Y, Crossley S, Lu D, Liu S, Hwang H Y 2020 Nat. Commun. 11 3141
Google Scholar
[13] Dong Z, Chen H, Qi M, Shen J, Liu W, Guo E, Li D, Zhang Y, Wu Z 2022 Laser Photonics Rev. 16 2100454
Google Scholar
[14] Tikhomirov O, Jiang H, Levy J 2002 Phys. Rev. Lett. 89 147601
Google Scholar
[15] Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758
Google Scholar
[16] Bhansali S, Khunsin W, Chatterjee A, Santiso J, Abad B, Martin-Gonzalez M, Jakob G, Sotomayor Torres C M, Chávez-Angel E 2019 Nanoscale Adv. 1 3647
Google Scholar
[17] Janotti A, Steiauf D, Van de Walle C G 2011 Phys. Rev. B 84 201304
Google Scholar
[18] Bellucci A, Mastellone M, Girolami M, Orlando S, Medici L, Mezzi A, Kaciulis S, Polini R, Trucchi D M 2017 Appl. Surf. Sci. 418 589
Google Scholar
[19] Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B 2001 Nature 413 597
Google Scholar
[20] Chen Z J, Zhou B Y, Li J X, Wen C L 2016 Appl. Surf. Sci. 386 389
Google Scholar
[21] Varghese T, Hollar C, Richardson J, Kempf N, Han C, Gamarachchi P, Estrada D, Mehta R J, Zhang Y 2016 Sci. Rep. 6 33135
Google Scholar
[22] Wunderlich W, Ohta H, Koumoto K 2009 Phys. B Condens. Matter 404 2202
Google Scholar
[23] Benthem K, Elsässer C, French R H 2001 J. Appl. Phys. 90 6156
Google Scholar
[24] Apreutesei M, Debord R, Bouras M, Regreny P, Botella C, Benamrouche A, Carretero-Genevrier A, Gazquez J, Grenet G, Pailhès S, Saint-Girons G, Bachelet R 2017 Sci. Technol. Adv. Mater. 18 430
Google Scholar
[25] Zhao T, Lu H B, Chen F, Dai S Y, Yang G Z, Chen Z H 2000 J. Cryst. Growth 212 451
Google Scholar
[26] Kumar S R S, Barasheed A Z, Alshareef H N 2013 ACS Appl. Mater. Interfaces 5 7268
Google Scholar
[27] Blennow P, Hagen A, Hansen K, Wallenberg L, Mogensen M 2008 Solid State Ion. 179 2047
Google Scholar
[28] Chan N H, Sharma R K, Smyth D M 1981 J. Electrochem. Soc. 128 1762
Google Scholar
[29] Culbertson C M, Flak A T, Yatskin M, Cheong P H Y, Cann D P, Dolgos M R 2020 Sci. Rep. 10 3729
Google Scholar
[30] Chatterjee A, Lan Z, Christensen D V, Bauitti F, Morata A, Chavez-Angel E, Sanna S, Castelli I E, Chen Y, Tarancon A, Pryds N 2022 Phys. Chem. Chem. Phys. 24 3741
Google Scholar
[31] Ohtomo A, Hwang H Y 2004 Appl. Phys. Lett. 84 1716
Google Scholar
[32] Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727
Google Scholar
[33] 许静, 何梓民, 杨文龙, 吴荣, 赖晓芳, 简基康 2022 71 197301
Google Scholar
Xu J, He Z M, Yang W L, Wu R, Lai X F, Jian J K 2022 Acta Phys. Sin. 71 197301
Google Scholar
[34] Matthews J, Blakeslee A 1974 J. Cryst. Growth 27 118
Google Scholar
[35] Wang T, Ganguly K, Marshall P, Xu P, Jalan B 2013 Appl. Phys. Lett. 103 212904
Google Scholar
[36] Zou D, Liu Y, Xie S, Lin J, Li J 2013 Chem. Phys. Lett. 586 159
Google Scholar
Catalog
Metrics
- Abstract views: 5123
- PDF Downloads: 149
- Cited By: 0