搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钽掺杂二氧化钛薄膜的光电性能研究

薛将 潘风明 裴煜

引用本文:
Citation:

钽掺杂二氧化钛薄膜的光电性能研究

薛将, 潘风明, 裴煜

Optoelectrical properties of tantalum-doped TiO2 thin films

Xue Jiang, Pan Feng-Ming, Pei Yu
PDF
导出引用
  • 采用脉冲激光沉积法 (PLD), 以石英玻璃为衬底制备了钽掺杂TiO2薄膜并研究了薄膜样品的光电性质. 沉积氧气分气压从0.3 Pa变化到0.7 Pa时薄膜样品的帯隙变化范围是3.26 eV到3.49 eV. 通过测量电阻率随温度的变化关系确定了薄膜内部的主要导电机理. 在150 K到210 K温度范围内, 热激发导电机理是主要的导电机理; 而在10 K到150 K范围内; 电导率随温度的变化复合Mott的多级变程跳跃模型 (VRH); 在210 K到300 K范围内, 电阻率和exp(b/T)1/2呈正比关系.
    Tantalum-doped TiO2 thin films were deposited on glass substrates by pulsed laser deposition (PLD). Their optoelectrical properties were studied. The optical band gap was found varying between 3.26 and 3.49 eV when the oxygen partial pressure increases from 0.3 to 0.7 Pa. The dependence of electrical property of the films on temperature was measured to identify the dominant conduction mechanism. It was found that thermally activated band conduction was the dominant conduction mechanism in the temperatures range of 150 to 210 K. Whereas, in the temperature region of 10 to 150 K, the dependence of the conductivity on temperature followed Mott’s variable range hopping (VRH) model. Moreover, the temperature dependence of resistivity for the films can be described by~ exp(b/T)1/2 at temperatures from 210 to 300 K.
    • 基金项目: 国家自然科学基金 (批准号:51032002) 和国家高技术研究发展计划项目 (批准号:2011AA050526) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51032002), and the National High Technology Research and Development Program of China (Grant No. 2011AA050526).
    [1]

    Maness P Smolinski S, Blake D, Huang Z, Wolfrum E, Jacoby W 1999 Appl. Environ. Microb. 65 4094

    [2]

    Wu J, Lv X, Zhang L, Xia Y, Huang F, Xu F 2009 J. Alloys Compd. 496 1

    [3]

    Regan B O, Gratzel M 1991 Nature 353 737

    [4]

    Hu L H, Dai S Y, Wang K J 2005 Acta Phys Sin 54 1914 (in Chinese) [胡林华, 戴松元, 王孔嘉 2005 54 1914]

    [5]

    Danion A, Disdier J, Guillard C, Abdelmalek F, Jaffrezic Renault N 2004 Appl. Catal. B: Environ. 52 213

    [6]

    Esquivel K, Arriaga L, Rodriguez F, Martinez L, Godinez L 2009 Water Res. 43 3593

    [7]

    Moon J, Park J, Lee S, Zyung T, Kim I 2010 Sens. Actuators B: Chem. 149 301

    [8]

    Asahi R, Taga Y,Mannstadt W, Freeman A J 2000 Phys. Rev. B 61 7459

    [9]

    Tang H, Prasad K, Sanjines R, Schmid P E, Levy F 1994 J. Appl. Phys. 75 2042

    [10]

    Liu X D, Jiang E Y, Li Z Q, Song Q G 2008 Appl. Phys. Lett. 92 252104

    [11]

    Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T, Hasegawa T 2005 Appl. Phys. Lett. 86 252101

    [12]

    Zhang S X, Kundaliya D C, Yu W, Dhar S, Young S Y, Riba L G S, Ogale S B, Vispute R D, Venkatesan T 2007 J. Appl. Phys. 102 013701

    [13]

    Zhang R S, Liu Y, Teng F 2012 Acta Phys. Sin. 61 392 (in Chinese) [章瑞铄, 刘涌, 滕繁 2012 61 392]

    [14]

    Luo X D, Di G Q 2012 Acta Phys. Sin. 61 391 (in Chinese) [罗晓东, 狄国庆 2012 61 391]

    [15]

    Hitosugi T, Furubayashi Y, Ueda A, Itabashi K, Inaba K, Hirose Y, Kinoda G, Yamamoto Y, Shimada T, Hasegawa T 2005 Jpn. J. Appl. Phys. 44 L1063

    [16]

    Gupta R K, Ghosh K, Mishra S R, Kahol P K 2008 Appl. Surf. Sci. 254 4018

    [17]

    Yamada N, Hitosugi T, Hoang N L H, Furubayashi Y, Hirose Y, Shimada T, Hasegawa T 2007 Jpn. J. Appl. Phys. 46 5275

    [18]

    Yamada N, Hitosugi T, Hoang N L H, Furubayashi Y, Hirose Y, Konuma S, Shimada T, Hasegawa T 2008 Thin Solid Films 516 5754

    [19]

    Hitosugi T, Kamisaka H, Yamashita K, Nogawa H, Furubayashi Y, Nakao S, Yamada N, Chikamatsu A, Kumigashira H, Oshima M, Hirose Y, Shimada T, Hasegawa T 2008 Appl. Phys. Exp. 1 111203

    [20]

    Patra A, Friend C S, Kapoor R, Prasad P N 2003 Chem. Mater. 15 3650

    [21]

    Lee W E, Fang Y K, Ho J J, Chen C Y, Chiou L H, Wang S J, Dai F, Heieh T, Tsai R Y, Huang D, Ho F C 2002 Solid State Electron 46 477

    [22]

    Tak Y H, Kim K B, Park H G, Lee K H, Lee J R 2002 Thin Solid Films 411 12

    [23]

    Miao W, Li X, Zhang Q, Huang L, Zhang Z, Zhang L, Yan X 2006 Thin Solid Films 500 70

    [24]

    Daude N, Gout C, Jouanin C 1977 Phys. Rev. B 15 3229

    [25]

    Park S M, Ikegami T, Ebihara K, Shin P K 2006 Appl. Surf. Sci. 253 1522

    [26]

    Yasuhiro I, Hirokazu K 2001 Appl. Surf. Sci. 169 508

    [27]

    Zhang S X, Dhar S, Yu W, Xu H, Ogale S B, Venkatesan T 2007 Appl. Phys. L 91 112

    [28]

    Yong T K, Tou T Y, Teo B S 2005 Appl. Surf. Sci. 248 388

    [29]

    Sheng P, Abeles B, Arie Y 1973 Phys. Rev. Lett. 31 44

    [30]

    Efros A L, Shklovskii B I 1975 J. Phys. C 8 L49

    [31]

    Mott N F, Davis E A 1979 Calendon Press Oxford

    [32]

    Yildiz A, Lisesivdin S B, Kasap M, Mardare D 2009 Physica B 404 1423

    [33]

    Mott N F 1968 J. Non-Cryst. Solids 1 1

  • [1]

    Maness P Smolinski S, Blake D, Huang Z, Wolfrum E, Jacoby W 1999 Appl. Environ. Microb. 65 4094

    [2]

    Wu J, Lv X, Zhang L, Xia Y, Huang F, Xu F 2009 J. Alloys Compd. 496 1

    [3]

    Regan B O, Gratzel M 1991 Nature 353 737

    [4]

    Hu L H, Dai S Y, Wang K J 2005 Acta Phys Sin 54 1914 (in Chinese) [胡林华, 戴松元, 王孔嘉 2005 54 1914]

    [5]

    Danion A, Disdier J, Guillard C, Abdelmalek F, Jaffrezic Renault N 2004 Appl. Catal. B: Environ. 52 213

    [6]

    Esquivel K, Arriaga L, Rodriguez F, Martinez L, Godinez L 2009 Water Res. 43 3593

    [7]

    Moon J, Park J, Lee S, Zyung T, Kim I 2010 Sens. Actuators B: Chem. 149 301

    [8]

    Asahi R, Taga Y,Mannstadt W, Freeman A J 2000 Phys. Rev. B 61 7459

    [9]

    Tang H, Prasad K, Sanjines R, Schmid P E, Levy F 1994 J. Appl. Phys. 75 2042

    [10]

    Liu X D, Jiang E Y, Li Z Q, Song Q G 2008 Appl. Phys. Lett. 92 252104

    [11]

    Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T, Hasegawa T 2005 Appl. Phys. Lett. 86 252101

    [12]

    Zhang S X, Kundaliya D C, Yu W, Dhar S, Young S Y, Riba L G S, Ogale S B, Vispute R D, Venkatesan T 2007 J. Appl. Phys. 102 013701

    [13]

    Zhang R S, Liu Y, Teng F 2012 Acta Phys. Sin. 61 392 (in Chinese) [章瑞铄, 刘涌, 滕繁 2012 61 392]

    [14]

    Luo X D, Di G Q 2012 Acta Phys. Sin. 61 391 (in Chinese) [罗晓东, 狄国庆 2012 61 391]

    [15]

    Hitosugi T, Furubayashi Y, Ueda A, Itabashi K, Inaba K, Hirose Y, Kinoda G, Yamamoto Y, Shimada T, Hasegawa T 2005 Jpn. J. Appl. Phys. 44 L1063

    [16]

    Gupta R K, Ghosh K, Mishra S R, Kahol P K 2008 Appl. Surf. Sci. 254 4018

    [17]

    Yamada N, Hitosugi T, Hoang N L H, Furubayashi Y, Hirose Y, Shimada T, Hasegawa T 2007 Jpn. J. Appl. Phys. 46 5275

    [18]

    Yamada N, Hitosugi T, Hoang N L H, Furubayashi Y, Hirose Y, Konuma S, Shimada T, Hasegawa T 2008 Thin Solid Films 516 5754

    [19]

    Hitosugi T, Kamisaka H, Yamashita K, Nogawa H, Furubayashi Y, Nakao S, Yamada N, Chikamatsu A, Kumigashira H, Oshima M, Hirose Y, Shimada T, Hasegawa T 2008 Appl. Phys. Exp. 1 111203

    [20]

    Patra A, Friend C S, Kapoor R, Prasad P N 2003 Chem. Mater. 15 3650

    [21]

    Lee W E, Fang Y K, Ho J J, Chen C Y, Chiou L H, Wang S J, Dai F, Heieh T, Tsai R Y, Huang D, Ho F C 2002 Solid State Electron 46 477

    [22]

    Tak Y H, Kim K B, Park H G, Lee K H, Lee J R 2002 Thin Solid Films 411 12

    [23]

    Miao W, Li X, Zhang Q, Huang L, Zhang Z, Zhang L, Yan X 2006 Thin Solid Films 500 70

    [24]

    Daude N, Gout C, Jouanin C 1977 Phys. Rev. B 15 3229

    [25]

    Park S M, Ikegami T, Ebihara K, Shin P K 2006 Appl. Surf. Sci. 253 1522

    [26]

    Yasuhiro I, Hirokazu K 2001 Appl. Surf. Sci. 169 508

    [27]

    Zhang S X, Dhar S, Yu W, Xu H, Ogale S B, Venkatesan T 2007 Appl. Phys. L 91 112

    [28]

    Yong T K, Tou T Y, Teo B S 2005 Appl. Surf. Sci. 248 388

    [29]

    Sheng P, Abeles B, Arie Y 1973 Phys. Rev. Lett. 31 44

    [30]

    Efros A L, Shklovskii B I 1975 J. Phys. C 8 L49

    [31]

    Mott N F, Davis E A 1979 Calendon Press Oxford

    [32]

    Yildiz A, Lisesivdin S B, Kasap M, Mardare D 2009 Physica B 404 1423

    [33]

    Mott N F 1968 J. Non-Cryst. Solids 1 1

  • [1] 马云鹏, 庄华鹭, 李敬锋, 李千. 应变增强Nb掺杂SrTiO3薄膜热电性能.  , 2023, 72(9): 096803. doi: 10.7498/aps.72.20222301
    [2] 刘骐萱, 王永平, 刘文军, 丁士进. 基于Ni电极和ZrO2/SiO2/ZrO2介质的MIM电容的导电机理研究.  , 2017, 66(8): 087301. doi: 10.7498/aps.66.087301
    [3] 岱钦, 吴杰, 邬小娇, 乌日娜, 彭增辉, 李大禹. 染料掺杂聚合物分散胆甾相液晶薄膜激光特性研究.  , 2015, 64(1): 016101. doi: 10.7498/aps.64.016101
    [4] 张彬, 王伟丽, 牛巧利, 邹贤劭, 董军, 章勇. H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响.  , 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [5] 杜允, 鲁年鹏, 杨虎, 叶满萍, 李超荣. In掺杂氮化亚铜薄膜的电学、光学和结构特性研究.  , 2013, 62(11): 118104. doi: 10.7498/aps.62.118104
    [6] 王伟, 唐佳伟, 王乐天, 陈小兵. 脉冲激光沉积法制备高温压电薄膜0.20 BiInO3-0.80PbTiO3(已撤稿).  , 2013, 62(23): 237701. doi: 10.7498/aps.62.237701
    [7] 韩军, 张鹏, 巩海波, 杨晓朋, 邱智文, 自敏, 曹丙强. 生长条件对脉冲激光沉积制备ZnO:Al薄膜光电性能的影响.  , 2013, 62(21): 216102. doi: 10.7498/aps.62.216102
    [8] 唐正霞, 沈鸿烈, 江丰, 方茹, 鲁林峰, 黄海宾, 蔡红. 变温退火制备铝诱导大晶粒多晶硅薄膜的机理研究.  , 2010, 59(12): 8770-8775. doi: 10.7498/aps.59.8770
    [9] 王学昭, 沈容, 路阳, 纪爱玲, 孙刚, 陆坤权, 崔平. 极性分子型电流变液导电机理研究.  , 2010, 59(10): 7144-7148. doi: 10.7498/aps.59.7144
    [10] 方 方, 郑时有, 周广有, 陈国荣, 孙大林. 氢致LaMg2Ni合金薄膜的光电性能变化.  , 2008, 57(6): 3813-3817. doi: 10.7498/aps.57.3813
    [11] 廖国进, 闫绍峰, 巴德纯. 铈掺杂氧化铝薄膜的蓝紫色发光特性.  , 2008, 57(11): 7327-7332. doi: 10.7498/aps.57.7327
    [12] 李阳平, 刘正堂, 赵海龙, 刘文婷, 闫 锋. GaP薄膜的射频磁控溅射沉积及其计算机模拟.  , 2007, 56(5): 2937-2944. doi: 10.7498/aps.56.2937
    [13] 张红鹰, 吴师岗. 飞秒激光作用下薄膜破坏的力学过程.  , 2007, 56(9): 5314-5317. doi: 10.7498/aps.56.5314
    [14] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率.  , 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [15] 邸玉贤, 计欣华, 胡 明, 秦玉文, 陈金龙. 基片曲率法在多孔硅薄膜残余应力检测中的应用.  , 2006, 55(10): 5451-5454. doi: 10.7498/aps.55.5451
    [16] 刘元富, 韩建民, 张谷令, 王久丽, 陈光良, 李雪明, 冯文然, 范松华, 刘赤子, 杨思泽. 脉冲高能量密度等离子体沉积(Ti, Al)N薄膜组织及其性能研究.  , 2005, 54(3): 1301-1305. doi: 10.7498/aps.54.1301
    [17] 周 锋, 梁开明, 王国梁. 电场热处理条件下TiO2薄膜的晶化行为研究.  , 2005, 54(6): 2863-2867. doi: 10.7498/aps.54.2863
    [18] 徐金宝, 郑毓峰, 李 锦, 孙言飞, 吴 荣. 丝网印刷FeS2(pyrite)薄膜的结构及光电性能.  , 2004, 53(9): 3229-3233. doi: 10.7498/aps.53.3229
    [19] 邹 璐, 汪 雷, 黄靖云, 赵炳辉, 叶志镇. 硅衬底上Zn1-xMgxO薄膜的结构与光学性质.  , 2003, 52(4): 935-938. doi: 10.7498/aps.52.935
    [20] 陈长虹, 易新建, 熊笔锋. 基于VO2薄膜非致冷红外探测器光电响应研究.  , 2001, 50(3): 450-452. doi: 10.7498/aps.50.450
计量
  • 文章访问数:  6335
  • PDF下载量:  740
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-14
  • 修回日期:  2013-04-14
  • 刊出日期:  2013-08-05

/

返回文章
返回
Baidu
map