Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of suface hydroxylated strontium titanate nanofibers on dielectric and energy storage properties of polyvinylidene fluoride composites

Wang Jiao Liu Shao-Hui Zhou Meng Hao Hao-Shan Zhai Ji-Wei

Citation:

Effects of suface hydroxylated strontium titanate nanofibers on dielectric and energy storage properties of polyvinylidene fluoride composites

Wang Jiao, Liu Shao-Hui, Zhou Meng, Hao Hao-Shan, Zhai Ji-Wei
PDF
HTML
Get Citation
  • With the rapid development of the electronics industry, the dielectric materials with high energy storage density, fast charge and discharge speed, easy-to-process and easy-to-mold, and stable performance are urgently needed to meet the requirements for lightweight and miniaturization of electronic component equipment. Dielectric ceramics has a high dielectric constant, but low breakdown field strength. Polyvinylidene fluoride (PVDF) has the advantages of good flexibility, high breakdown field strength, and light weight, but its dielectric constant is low. Achieving the ability to tailor the interface between dielectric ceramics filler and PVDF polymer matrix is a key issue for realizing the desirable dielectric properties and high energy density in the nanocomposites. As a result, much effort has been made to prepare the polymer composites through the surface modification of the nanoparticles with high dielectric constant fillers dispersed in a matrix, with the hope of preparing composites containing the high dielectric constant of the ceramic fillers and the high breakdown strength of polymers. In this work, in order to obtain the high dielectric-constant and high-energy-storage-density dielectric ceramics, the electrospinning method is used to prepare the SrTiO3 one-dimensional nanofibers as the inorganic fillers and the casting method is adopted to prepare PVDF as the polymer matrix. To improve the interface between inorganic nanofiber fillers and PVDF matrix, the SrTiO3 nanofibers are modified by surface hydroxylation. The effects of suface hydroxylated SrTiO3 nanofibers on the dielectric properties and energy storage properties of PVDF composites are studied. The correlation between interface modification and energy storage performance of composites is investigated to reveal the mechanism of enhanced energy storage performance of SrTiO3 nanofibers/PVDF composites. The results show that the dispersion of surface-hydroxylating SrTiO3 nanofibers in PVDF polymer can be improved. The composites exhibit improved dielectric properties and enhanced breakdown strength. When the filling quantity of the surface-hydroxylating SrTiO3 nanofiber fillers is 2.5 vol%, the energy storage density of the composite reaches 7.96 J/cm3. Suface-hydroxylating SrTiO3 nanofibers exhibit excellent dispersion in the PVDF polymer matrix and strong interfacial adhesion with the matrix, leading the composites to possess excellent dielectric constant and energy storage performance. The surface hydroxylation of ceramic fillers can improve the energy storage performance of the composites.
      Corresponding author: Wang Jiao, wangjiao_1203@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51902088), the Programs for Tackling Key Problems in Science and Technology of Henan Province, China (Grant Nos. 202102210002, 202102210041), and the Henan Province College Students′ Innovation and Entrepreneurship Training Program, China (Grant No. S201911517008)
    [1]

    Wang Y, Wang L, Yuan Q, Niu Y, Chen J, Wang Q, Wang H 2017 J. Mater. Chem. A 5 10849Google Scholar

    [2]

    Luo H, Roscow J, Zhou X, Chen S, Han X, Zhou K, Zhang D, Bowen C R 2017 J. Mater. Chem. A 5 7091Google Scholar

    [3]

    Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar

    [4]

    Zhu Y, Zhu Y, Huang X, Chen J, Li Q, He J, Jiang P 2019 Adv. Energy Mater. 9 1901826Google Scholar

    [5]

    Luo H, Ma C, Zhou X, Chen S, Zhang D 2017 Macromolecules 50 5132Google Scholar

    [6]

    Shen Z H, Wang J J, Jiang J Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2018 Adv. Energy Mater. 8 1800509Google Scholar

    [7]

    Zhang D, Zhou X, Roscow J, Zhou K, Wang L, Luo H, Bowen C R 2017 Sci. Rep. 7 45179Google Scholar

    [8]

    Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T, Hu G H 2012 Prog. Mate.r Sci. 57 660Google Scholar

    [9]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [10]

    Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M T, Liu H 2017 Adv. Mater. 29 1601727Google Scholar

    [11]

    赵学童, 廖瑞金, 李建英, 王飞鹏 2015 64 127701Google Scholar

    Zhao X T, Liao R J, Li J Y, Wang F P 2015 Acta Phys. Sin. 64 127701Google Scholar

    [12]

    冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲 2016 65 188101Google Scholar

    Feng Q, Li M K, Tang H T, Wang X D, Gao Z M, Meng F L 2016 Acta Phys. Sin. 65 188101Google Scholar

    [13]

    Song Y, Shen Y, Liu H Y, Lin Y H, Li M, Nan C W 2012 J. Mate.r Chem. 22 8063Google Scholar

    [14]

    Song Y, Shen Y, Hu P H, Lin Y H, Li M, Nan C W 2012 Appl. Phys. Lett. 101 152904Google Scholar

    [15]

    Xie L Y, Huang X Y, Wu C, Jiang P K 2011 J. Mater. Chem. 21 5897Google Scholar

    [16]

    Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244Google Scholar

    [17]

    Thakur V K, Lin M F, Tan E J, Lee P S 2012 J. Mater. Chem. 22 5951Google Scholar

    [18]

    Thakur V K, Tan E J, Lin M F, Lee P S 2011 Polym. Chem. 2 2000Google Scholar

    [19]

    Thakur V K, Yan J, Lin M F, Zhi C Y, Golberg D, Bando Y, Sim R, Lee P S 2012 Polym. Chem. 3 962Google Scholar

    [20]

    Wang X, Dai Y Y, Wang W M, Ren M M, Li B Y, Fan C, Liu X Y 2014 ACS Appl. Mater. Interfaces 6 16182Google Scholar

    [21]

    Almadhoun M N, Bhansali U S, Alshareef H N 2012 J. Mater. Chem. 22 11196Google Scholar

    [22]

    Yuan X P, Matsuyama Y, Chung T C M 2010 Macromolecules 43 4011Google Scholar

    [23]

    Zhang Q P, Xia W M, Zhu Z G, Zhang Z C 2013 J. Appl. Polym. Sci. 127 3002Google Scholar

    [24]

    Zhang Z C, Chung T C M 2007 Macromolecules 40 9391Google Scholar

    [25]

    Yu K, Wang H, Zhou Y C, Bai Y Y, Niu Y J 2013 J. Appl. Phys. 113 034105Google Scholar

    [26]

    Wang Z P, Nelson J K, Miao J J, Linhardt R J, Schadler L S, Hillborg H, Zhao S 2012 IEEE Trans. Dielect. El. In. 19 960Google Scholar

    [27]

    Kim P, Doss N M, Tillotson J P, Hotchkiss P J, Pan M J, Marder S R, Li J Y, Calame J P, Perry J W 2009 ACS Nano 3 2581Google Scholar

    [28]

    王璐, 孔文杰, 罗行, 周学凡, 周科朝, 张斗 2018 无机材料学报 33 1060

    Wang L, Kong W J, Luo H, Zhou X F, Zhou K C, Zhang D 2018 Journal of Inorganic Materials 33 1060

    [29]

    Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram. Int. 38 1071Google Scholar

  • 图 1  (a)静电纺丝法制备的ST NF的SEM图; (b)表面羟基化改性前后ST NF的XRD图

    Figure 1.  (a) SEM image of ST NF; (b) XRD patterns of ST NF and ST NF—OH.

    图 2  ST NF和ST NF—OH的FTIR图

    Figure 2.  FTIR of ST NF and ST NF—OH.

    图 3  (a) ST NF的XPS全谱扫描图; (b) ST NF—OH的XPS全谱扫描图; 插图为O 1 s元素的精细扫描谱线

    Figure 3.  (a) XPS spectra of ST NF; (b) XPS spectra of ST NF—OH. High-resolution XPS spectra of O 1 s are shown in the inset.

    图 4  (a) 羟基化处理前ST NF的SEM图; (b) 羟基化处理后ST NF的SEM图

    Figure 4.  (a) SEM image of ST NF before hydroxylation; (b) SEM image of ST NF—OH.

    图 5  5% (体积分数)填充量ST NF—OH/PVDF复合材料的(a)表面形貌和(b)截面形貌

    Figure 5.  (a) Surface SEM and (b) cross-section SEM of 5% (volume fraction) ST NF—OH/PVDF composites

    图 6  羟基化改性后ST NF与PVDF形成氢键的示意图

    Figure 6.  Schematic diagrams of formation a bridge between the F atoms on the PVDF and the —OH groups of the hydroxylation of ST NF.

    图 7  室温条件下不同填充量(体积分数) ST NF—OH/PVDF复合材料的(a)介电常数和(b)介电损耗随频率的变化

    Figure 7.  Frequency dependence of the dielectric constant (a) and loss tangent (b) of ST NF—OH/PVDF composites with various concentrations (volume fraction) of filler.

    图 8  不同填充量ST NF—OH/PVDF复合材料的介电常数测量值和数值模拟

    Figure 8.  Dielectric constant measurement and numerical simulation of ST NF—OH/PVDF composites with different loading.

    图 9  (a) 不同填充量ST NF—OH/PVDF复合材料的Weibull分布曲线; (b)不同填料浓度下ST NF—OH/PVDF复合材料的室温耐击穿强度

    Figure 9.  (a) Weibull plots and (b) breakdown strength for ST NF—OH/PVDF composites with various concentrations of fillers.

    图 10  (a)室温条件下不同ST NF—OH填料复合材料的P-E曲线; (b)不同ST NF—OH填料的复合材料的储能密度、放电效率随电场的变化

    Figure 10.  (a) P-E curves and (b) the efficiency and energy storage density of ST NF—OH/PVDF composites with various concentration (volume fration) fillers.

    表 1  羟基化处理前后样品的晶体结构

    Table 1.  Crystal structure of the samples before and after hydroxylation.

    样品PDF卡片编号晶相空间群晶格参数/nm
    ST NF35-0734立方相Pm-3ma = b = c = 0.3911
    ST NF—OH35-0734立方相Pm-3ma = b = c = 0.3915
    DownLoad: CSV

    表 2  前期文献报道的PVDF基复合材料的储能密度与本文实验结果比较

    Table 2.  Comparison of the energy storage density of PVDF-based composite materials reported in previous literatures and the experimental results in this paper.

    材料类型表面改性方式储能
    密度/J·cm–3
    文献
    BaTiO3/P
    (VDF-HFP)薄膜
    氨甲基膦酸3.2[27]
    SrTiO3/PVDF
    薄膜
    聚乙烯吡咯烷酮3.54[25]
    BaTiO3/
    P(VDF-HFP)
    复合薄膜
    4.89[28]
    Ba0.7Sr0.3TiO3/P
    (VDF-CTFE)材料
    KH-550偶联剂6.5[29]
    SrTiO3/PVDF薄膜表面羟基化7.96本文
    DownLoad: CSV
    Baidu
  • [1]

    Wang Y, Wang L, Yuan Q, Niu Y, Chen J, Wang Q, Wang H 2017 J. Mater. Chem. A 5 10849Google Scholar

    [2]

    Luo H, Roscow J, Zhou X, Chen S, Han X, Zhou K, Zhang D, Bowen C R 2017 J. Mater. Chem. A 5 7091Google Scholar

    [3]

    Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar

    [4]

    Zhu Y, Zhu Y, Huang X, Chen J, Li Q, He J, Jiang P 2019 Adv. Energy Mater. 9 1901826Google Scholar

    [5]

    Luo H, Ma C, Zhou X, Chen S, Zhang D 2017 Macromolecules 50 5132Google Scholar

    [6]

    Shen Z H, Wang J J, Jiang J Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2018 Adv. Energy Mater. 8 1800509Google Scholar

    [7]

    Zhang D, Zhou X, Roscow J, Zhou K, Wang L, Luo H, Bowen C R 2017 Sci. Rep. 7 45179Google Scholar

    [8]

    Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T, Hu G H 2012 Prog. Mate.r Sci. 57 660Google Scholar

    [9]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [10]

    Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M T, Liu H 2017 Adv. Mater. 29 1601727Google Scholar

    [11]

    赵学童, 廖瑞金, 李建英, 王飞鹏 2015 64 127701Google Scholar

    Zhao X T, Liao R J, Li J Y, Wang F P 2015 Acta Phys. Sin. 64 127701Google Scholar

    [12]

    冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲 2016 65 188101Google Scholar

    Feng Q, Li M K, Tang H T, Wang X D, Gao Z M, Meng F L 2016 Acta Phys. Sin. 65 188101Google Scholar

    [13]

    Song Y, Shen Y, Liu H Y, Lin Y H, Li M, Nan C W 2012 J. Mate.r Chem. 22 8063Google Scholar

    [14]

    Song Y, Shen Y, Hu P H, Lin Y H, Li M, Nan C W 2012 Appl. Phys. Lett. 101 152904Google Scholar

    [15]

    Xie L Y, Huang X Y, Wu C, Jiang P K 2011 J. Mater. Chem. 21 5897Google Scholar

    [16]

    Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244Google Scholar

    [17]

    Thakur V K, Lin M F, Tan E J, Lee P S 2012 J. Mater. Chem. 22 5951Google Scholar

    [18]

    Thakur V K, Tan E J, Lin M F, Lee P S 2011 Polym. Chem. 2 2000Google Scholar

    [19]

    Thakur V K, Yan J, Lin M F, Zhi C Y, Golberg D, Bando Y, Sim R, Lee P S 2012 Polym. Chem. 3 962Google Scholar

    [20]

    Wang X, Dai Y Y, Wang W M, Ren M M, Li B Y, Fan C, Liu X Y 2014 ACS Appl. Mater. Interfaces 6 16182Google Scholar

    [21]

    Almadhoun M N, Bhansali U S, Alshareef H N 2012 J. Mater. Chem. 22 11196Google Scholar

    [22]

    Yuan X P, Matsuyama Y, Chung T C M 2010 Macromolecules 43 4011Google Scholar

    [23]

    Zhang Q P, Xia W M, Zhu Z G, Zhang Z C 2013 J. Appl. Polym. Sci. 127 3002Google Scholar

    [24]

    Zhang Z C, Chung T C M 2007 Macromolecules 40 9391Google Scholar

    [25]

    Yu K, Wang H, Zhou Y C, Bai Y Y, Niu Y J 2013 J. Appl. Phys. 113 034105Google Scholar

    [26]

    Wang Z P, Nelson J K, Miao J J, Linhardt R J, Schadler L S, Hillborg H, Zhao S 2012 IEEE Trans. Dielect. El. In. 19 960Google Scholar

    [27]

    Kim P, Doss N M, Tillotson J P, Hotchkiss P J, Pan M J, Marder S R, Li J Y, Calame J P, Perry J W 2009 ACS Nano 3 2581Google Scholar

    [28]

    王璐, 孔文杰, 罗行, 周学凡, 周科朝, 张斗 2018 无机材料学报 33 1060

    Wang L, Kong W J, Luo H, Zhou X F, Zhou K C, Zhang D 2018 Journal of Inorganic Materials 33 1060

    [29]

    Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram. Int. 38 1071Google Scholar

  • [1] Zhang Yu-Ye, Zhang Yi-Yi, Wei Wen-Chang, Su Zhi-Cheng, Lan Dan-Quan, Luo Shi-Hao. Molecular dynamics simulation of mechanical and thermal properties of nano-zinc oxide modified cellulose insulating paper. Acta Physica Sinica, 2024, 73(12): 127701. doi: 10.7498/aps.73.20240208
    [2] Ma Yun-Peng, Zhuang Hua-Lu, Li Jing-Feng, Li Qian. Strain-enhanced thermoelectric properties of Nb-doped SrTiO3 thin films. Acta Physica Sinica, 2023, 72(9): 096803. doi: 10.7498/aps.72.20222301
    [3] Gong Ling-Yun, Zhang Ping, Chen qian, Lou Zhi-Hao, Xu Jie, Gao Feng. First principles study of structure and property of Nb5+-doped SrTiO3. Acta Physica Sinica, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [4] Ji Jian-Wei, Kazuya Yamamura, Deng Hui. Plasma-assisted polishing for atomic surface fabrication of single crystal SiC. Acta Physica Sinica, 2021, 70(6): 068102. doi: 10.7498/aps.70.20202014
    [5] Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong. Graphene modification based on plasma technologies. Acta Physica Sinica, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [6] Du Jin-Hua, Li Yong, Sun Ning-Ning, Zhao Ye, Hao Xi-Hong. Dielectric, ferroelectric and high energy storage behavior of (1–x)K0.5Na0.5NbO3xBi(Mg0.5Ti0.5)O3 lead free relaxor ferroelectric ceramics. Acta Physica Sinica, 2020, 69(12): 127703. doi: 10.7498/aps.69.20200213
    [7] Wang Jiao, Liu Shao-Hui, Chen Chang-Qing, Hao Hao-Shan, Zhai Ji-Wei. Interface modification and energy storage properties of barium titanate-based/ polyvinylidene fluoride composite. Acta Physica Sinica, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [8] Li Zong-Bao, Wang Xia, Zhou Rui-Xue, Wang Ying, Li Yong. Surface modification in Cu-Ag codoped TiO2: the first-principle calculation. Acta Physica Sinica, 2017, 66(11): 117101. doi: 10.7498/aps.66.117101
    [9] Zou Chao, Xu Zhi-Mou, Ma Zhi-Chao, Wu Xing-Hui, Peng Jing. Preparation of BST nanotube and its infrared absorption properties. Acta Physica Sinica, 2015, 64(11): 118101. doi: 10.7498/aps.64.118101
    [10] Wei Pang, Li Kang, Feng Xiao, Ou Yun-Bo, Zhang Li-Guo, Wang Li-Li, He Ke, Ma Xu-Cun, Xue Qi-Kun. Growth of micro-devices of topological insulator thin films by molecular beam epitaxy on substrates pre-patterned with photolithography. Acta Physica Sinica, 2014, 63(2): 027303. doi: 10.7498/aps.63.027303
    [11] Fu Cheng-Wu, Zhang Shuan-Qin, Chen Ming-Qing. Research on the electromagnetic properties of nano-fiber coating absorbent. Acta Physica Sinica, 2012, 61(19): 197501. doi: 10.7498/aps.61.197501
    [12] Wang Shang-Bao, Dong Ze-Hua, Xu Zhi-Mou, Peng Jing. Metal organic decomposition technique and optical propertiesof amorphous Ba0.7Sr0.3TiO3 thin films. Acta Physica Sinica, 2011, 60(5): 057702. doi: 10.7498/aps.60.057702
    [13] Xiong Tao, Gao Chuan-Bo, Chen Xiang-Lei, Zhou Xian-Yi, Weng Hui-Min, Cao Fang-Yu, Ye Bang-Jiao, Han Rong-Dian, Du Huai-Jiang. Positron study of carbon-Fe3O4 coaxial nanofibers. Acta Physica Sinica, 2009, 58(10): 6946-6950. doi: 10.7498/aps.58.6946
    [14] Qin Yu-Xiang, Hu Ming. Field emission properties of titanium carbide-modified carbon nanotubes. Acta Physica Sinica, 2008, 57(6): 3698-3702. doi: 10.7498/aps.57.3698
    [15] Wu Xue-Wei, Liu Xiao-Jun. Grain-boundary effects on optical properties in SrTiO3 nanoparticles. Acta Physica Sinica, 2008, 57(9): 5500-5505. doi: 10.7498/aps.57.5500
    [16] Zhou Qi-Gang, Zhai Ji-Wei, Yao Xi. The influence of distribution of Na+-dopant on the structure and dielectric properties of Ba0.25Sr0.75TiO3 thin film. Acta Physica Sinica, 2007, 56(11): 6666-6673. doi: 10.7498/aps.56.6666
    [17] Gu Wei-Chao, Lü Guo-Hua, Chen Huan, Chen Guang-Liang, Feng Wen-Ran, Zhang Gu-Ling, Yang Si-Ze. Plasma electrolytic deposition on aluminum tubes. Acta Physica Sinica, 2007, 56(4): 2337-2341. doi: 10.7498/aps.56.2337
    [18] Cui Yong-Feng, Yuan Zhi-Hao. Structural phase transformation and optical absorption of capped TiO2 nanoparticles. Acta Physica Sinica, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [19] Man Bao-Yuan, Zhang Yun-Hai, Lü Guo-Hua, Liu Ai-Hua, Zhang Qing-Gang, Guzman L., Adami M., Miotello A.. Study on surface modification of polytetrafluoroethylene by N+ ion implantation. Acta Physica Sinica, 2005, 54(2): 837-841. doi: 10.7498/aps.54.837
    [20] Chen Chuan-Sheng, Chen Xiao-Hua, Li Xue-Qian, Zhang Gang, Yi Guo-Jun, Zhang Hua, Hu Jing. Carbon nanotubes reinforced nickel-phosphorus base composite coating. Acta Physica Sinica, 2004, 53(2): 531-536. doi: 10.7498/aps.53.531
Metrics
  • Abstract views:  9061
  • PDF Downloads:  167
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2020
  • Accepted Date:  06 July 2020
  • Available Online:  21 October 2020
  • Published Online:  05 November 2020

/

返回文章
返回
Baidu
map