-
本文提出一种用于短腔、自屏蔽磁共振成像超导磁体系统的混合优化设计方法, 通过结合线性规划和非线性优化算法,设计出的磁体系统具有建造成本低、结构简单、以及线圈中最高磁场、 电流安全裕度和电磁应力可控等优点.首先,通过线性规划算法在欲布置线圈空间范围内建立二维连续网格划分, 搜索满足磁场约束条件的网格电流分布图;其次,将电流分布图中的非零电流簇离散成螺线管线圈, 通过非线性优化算法计算出满足成像区域磁场均匀度要求、5 Gs杂散场限制、线圈中最高磁场限制、 电流安全裕度以及线圈间尺寸间隔等约束条件的线圈结构参数.文中给出一个中心磁场为1.5 T自屏蔽磁共振成像 超导磁体系统的设计案例,在50 cm球形成像区域所产生的磁场峰峰值不均匀度为10 ppm,线圈最大长度为1.32 m. 该设计方法可用于对称、非对称螺线管线圈系统以及开放式双平面线圈系统的磁共振成像磁体系统设计.A hybrid optimization approach with a combination of linear programming and nonlinear programming algorithm for designing a compact self-shielded magnetic resonance imaging (MRI) superconducting magnet system is presented. The designed coils possess advantages of low construction costs, simple coil structure and the maximum magnetic strength within coils, current margin and electromagnetic stress easy to control. Firstly, in the stage of linear programming optimization, the feasible rectangular region can be divided into two-dimensional meshes, and a current map is calculated for meeting the magnetic field constraints over the surfaces of DSV sphere and 5 gauss stray field ellipse; Secondly, the current map has many nonzero current clusters and each cluster can be discretized into a solenoid. A nonlinear programming algorithm is employed to optimize the positions of all solenoids for minimizing the total coil volume and meeting all constraints including magnetic field which is the same as linear programming stage, and maximum magnetic strength, current margin and the gap between neighborhood inner coils. A 1.5 T compact self-shielded MRI superconducting magnet system is studied, the total coil length is only 1.32 m and the peak-peak homogeneity over 50 cm DSV is 10 ppm. The design approach is flexible and efficient for designing symmetrical and asymmetrical horizontal MRI and also open bi-planar MRI system.
-
Keywords:
- self-shielded /
- MRI /
- hybrid optimization /
- numerical method
[1] Stuart Crozier, Doddrell D M 1997 Journal of Magnetic Resonance 127 233
[2] Shaw N R, Ansorge R E 2002 IEEE Transactions on Applied Superconductivity 12 733
[3] Hao Xu, Conolly S M, Scott G C 2000 IEEE Transactions on Magnetics 36 476
[4] Morgan P N, Conolly S M, Albert Macovski 1999 Magnetic Resonance in Medicine 41 1221
[5] Wu W, He Y, Ma L Z, Huang W X, Xia J W 2009 Chin. Phys. C 34 978
[6] Wang Q L, Xu G X, Dai Y M, Zhao B Z, Yan L G, Kim K M 2009 IEEE Transactions on Applied Superconductivity 19 2289
[7] Zhao H W, Stuart Crozier, Doddrell D M 2001 Magnetic Resonance in Medicine 45 331
[8] Wang Q L 2008 (Beijing: Science Press) p54-55 (in Chinese) [王秋良 2008 高磁场超导磁体科学(北京:科学出版社) 第54–55页]
-
[1] Stuart Crozier, Doddrell D M 1997 Journal of Magnetic Resonance 127 233
[2] Shaw N R, Ansorge R E 2002 IEEE Transactions on Applied Superconductivity 12 733
[3] Hao Xu, Conolly S M, Scott G C 2000 IEEE Transactions on Magnetics 36 476
[4] Morgan P N, Conolly S M, Albert Macovski 1999 Magnetic Resonance in Medicine 41 1221
[5] Wu W, He Y, Ma L Z, Huang W X, Xia J W 2009 Chin. Phys. C 34 978
[6] Wang Q L, Xu G X, Dai Y M, Zhao B Z, Yan L G, Kim K M 2009 IEEE Transactions on Applied Superconductivity 19 2289
[7] Zhao H W, Stuart Crozier, Doddrell D M 2001 Magnetic Resonance in Medicine 45 331
[8] Wang Q L 2008 (Beijing: Science Press) p54-55 (in Chinese) [王秋良 2008 高磁场超导磁体科学(北京:科学出版社) 第54–55页]
计量
- 文章访问数: 7512
- PDF下载量: 764
- 被引次数: 0