Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental demonstration on quantum coherence evolution of two-mode squeezed state

Yu Juan Zhang Yan Wu Yin-Hua Yang Wen-Hai Yan Zhi-Hui Jia Xiao-Jun

Citation:

Experimental demonstration on quantum coherence evolution of two-mode squeezed state

Yu Juan, Zhang Yan, Wu Yin-Hua, Yang Wen-Hai, Yan Zhi-Hui, Jia Xiao-Jun
PDF
HTML
Get Citation
  • As one of the most remarkable features of quantum mechanics, quantum coherence is regarded as an important quantum resource in the quantum information processing. The one-mode squeezed state and the two-mode squeezed state (Einstein-Podolsky-Rosen (EPR) entangled states) as the most representative examples of nonclassical states both have quantum coherence. The squeezing property of the squeezed state is described by the variance of quadrature components, and the positive partial transposition (PPT) criterion is used to describe the entanglement of the EPR entangled states. The research of the quantum coherence of Gaussian states is also a bridge between the properties of squeezing and entanglement. It has been shown that the quantum coherence with infinite-dimensional systems can be quantified by relative entropy. One of the widely used effective methods to obtain the value of quantum coherence experimentally is the quantum tomography. The covariance matrices of the quantum states are reconstructed via balanced homodyne detection and then taken into quantum coherence expression to calculate the corresponding value. The main factors affecting quantum coherence are the classical and uncorrelated noise in the actual experimental generation processing and the decoherence effect caused by the coupling between quantum resources and the surrounding environment. And the quantum coherence evolution in the generation and transmission process of the quantum resources is essential for the practical applications. Therefore, we analyze in detail the influences of the impurity of quantum resource on squeezing, entanglement and quantum coherence. The evolutions of quantum coherence of these Gaussian states in the lossy channels are demonstrated experimentally. The quantum coherence is shown to be robust against the loss in the lossy channels, which is similar to the case of squeezing and entanglement. The quantum coherences of the squeezed states and the EPR entangled states are robust against the thermal photons in the actual experimental generation processing, although the squeezing and entanglement of Gaussian states disappear at a certain number of thermal photons. Our research results provide a reference for the practical applications of quantum coherence of the squeezed state and entangled states in the lossy environment.
      Corresponding author: Yu Juan, yujuan643@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62105256, 62122044, 61925503, 11904218, 12147215, 11834010, 62135008, 62001374, 12004276, 12103039), the Natural Science Research Program of the Education Department of Shaanxi Province, China (Grant Nos. 21JK0694, 18JK0386, 21JY016), the Program for the Innovative Talents of Higher Education Institutions of Shanxi, China, the Scientific and Technological Programs of Higher Education Institutions in Shanxi, China (Grant No. 2019L0794), the Program for Sanjin Scholars of Shanxi Province, China, the Fund for Shanxi “1331Project” Key Subjects Construction, China, and the Natural Science Basic Research Program in Shaanxi Province of China (Grant No. 2021JQ-640).
    [1]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [2]

    Li Y C, Lin H Q 2016 Sci. Rep. 6 26365Google Scholar

    [3]

    Shi Y H, Shi H L, Wang X H, Hu M L, Liu S Y, Yang W L, Fan H 2020 J. Phys. A 53 085301Google Scholar

    [4]

    Hillery M 2016 Phys. Rev. A 93 012111Google Scholar

    [5]

    Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N, Adesso G 2016 Phys. Rev. Lett. 116 150502Google Scholar

    [6]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [7]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photonics 5 222Google Scholar

    [8]

    Giorda P, Allegra M 2016 J Phys. A-Math. Theor. 51 2Google Scholar

    [9]

    Zhang A, Zhang K, Zhou L, ZhangW 2018 Phys. Rev. Lett. 121 073602Google Scholar

    [10]

    Yuan Y, Hou Z, Zhao Y Y, Zhong H S, Xiang G Y, Li C F, Guo G C 2018 Opt. Express 26 004470Google Scholar

    [11]

    Wu K D, Hou Z, Zhong H S, Yuan Y, Guo G C 2017 Optica 4 454Google Scholar

    [12]

    Zhang M, Kang H J, Wang M H, Xu X L, Peng K C 2021 Photonics Res. 9 887Google Scholar

    [13]

    Tan K C, Volkoff T, Kwon H, Jeong H 2017 Phys. Rev. Lett. 119 190405Google Scholar

    [14]

    Tan K C, Jeong H 2018 Phys. Rev. Lett. 121 220401Google Scholar

    [15]

    Lostaglio M, Müller M P 2019 Phys. Rev. Lett. 123 020403Google Scholar

    [16]

    林银, 黄明达, 於亚飞, 张智明 2017 66 110301Google Scholar

    Lin Y, Huang M D, Yu Y F, Zhang Z M 2017 Acta Phys. Sin. 66 110301Google Scholar

    [17]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439Google Scholar

    [18]

    Feng X N, Wei L F 2017 Sci. Rep. 7 15492Google Scholar

    [19]

    Zhang Y R, Shao L H, Li Y, Fan H 2016 Phys. Rev. A 93 012334Google Scholar

    [20]

    Xu J 2016 Phys. Rev. A 93 032111Google Scholar

    [21]

    Buono D, Buono G, Petrillo G, Torre G, Zonzo G, Illuminati F 2016 arXiv: 1609.00913

    [22]

    周瑶瑶, 刘艳红, 闫智辉, 贾晓军 2021 70 104203Google Scholar

    Zhou Y Y, Liu Y H 2021 Acta Phys. Sin. 70 104203Google Scholar

    [23]

    Yan Z H, Qin J, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2021 Fundamental Research 1 43Google Scholar

    [24]

    Chou C W, Hume D B, Thorpe M J, Wineland D J, Rosenband T 2011 Phys. Rev. Lett. 106 160801Google Scholar

    [25]

    Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401Google Scholar

    [26]

    Liu S S, Lou Y B, Chen Y X, Jing J T 2022 Phys. Rev. Lett. 128 060503Google Scholar

    [27]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [28]

    Ma L X, Lei X, Yan J L, Li R Y, Chai T, Yan Z H, Jia X J, Xie C D, Peng K C 2022 Nat. Commun. 13 2368Google Scholar

    [29]

    Lei X, Ma L X, Yan J L, Zhou X Y, Yan Z H, Jia X J 2022 Adv. Phys. X 7 2060133Google Scholar

    [30]

    Liu S S, Lou Y B, Xin J, Jing J T 2018 Phys. Rev. Appl. 10 064046Google Scholar

    [31]

    Liu Y H, Huo N, Li J M, Cui L, Li X Y, Ou Z Y 2019 Opt. Express 27 11292Google Scholar

    [32]

    Yu J, Qin Y, Qin J L, Wang H, Yan Z H, Jia X J, Peng K C 2020 Phys. Rev. Appl. 13 024037Google Scholar

    [33]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472Google Scholar

    [34]

    Guo X S, Breum C R, Borregaard J, Izumi S, Larsen M V, Gehring T, Christandl M, Neergaard-Nielsen J S, Andersen U L 2020 Nat. Phys. 16 281Google Scholar

    [35]

    Bai S Y, An J H 2021 Phys. Rev. Lett. 127 083602Google Scholar

    [36]

    Yan Z H, Wu L, Jia X J, Xie C D, Peng K C 2021 Adv. Quantum Technol. 4 2100071Google Scholar

    [37]

    Streltsov A, Singh U, Dhar H S, Bera M N, Adesso G 2015 Phys. Rev. Lett. 115 020403Google Scholar

    [38]

    Chitambar E, Hsieh M H 2016 Phys. Rev. Lett. 117 020402Google Scholar

    [39]

    Deng X W, Liu Y, Wang M H, Su X L, Peng K C 2021 npj Quantum Inform. 7 65Google Scholar

    [40]

    Liu Y, Zheng K M, Kang H J, Han D M, Wang M H, Zhang L J, Su X L, Peng K C 2022 npj Quantum Inform. 8 38Google Scholar

    [41]

    Kang H J, Han D M, Wang N, Liu Y, Hao S H, Su X L 2021 Photonics Res. 9 1330Google Scholar

    [42]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [43]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321Google Scholar

    [44]

    Adesso G, Serafini A 2004 Phys. Rev. A 70 022318Google Scholar

    [45]

    Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663Google Scholar

    [46]

    Zhou Y Y, Yu J, Yan Z H, Jia X J, Zhang J, Xie C D, Peng K C 2018 Phys. Rev. Lett. 121 150502Google Scholar

    [47]

    Bougouffa S, Ficek Z 2020 Phys. Rev. A 102 043720Google Scholar

    [48]

    Xiong S J, Sun Z, Su Q P, Xi Z J, Yang C P 2021 Optica 8 1003Google Scholar

  • 图 1  实验装置示意图, 其中DBS为双色分束镜; MC为模式清洁器; HWP为半波片; HR为高反镜; PBS为偏振分光棱镜; LO为本地振荡光

    Figure 1.  Schematic diagram of experimental setup. DBS, dichroic beam splitter; MC, mode cleaner; HWP, half-wave plate; HR, high reflection; PBS, polarizing beam splitter; LO, a strong local oscillator beam.

    图 2  单模压缩态压缩特性和量子相干性随热光子数的变化 (a) 相对噪声功率; (b) 量子相干性

    Figure 2.  Dependence of squeezing level and quantum coherence of the one-mode squeezed state on the number of thermal photons: (a) Relative noise power; (b) quantum coherence.

    图 3  单模压缩态实验结果 (a) 相对噪声功率随传输效率的变化; (b) 损耗信道中压缩态光场的纯度对量子相干性的影响

    Figure 3.  Experimental results of the one-mode squeezed state in a lossy channel: (a) Dependence of relative noise power on the transmission efficiency; (b) the influence of purity of squeezed state on quantum coherence in a lossy channel.

    图 4  双模压缩态实验结果 (a) PPT值随热光子数的变化; (b) 量子相干性随热光子数的变化; (c) 纠缠特性随传输效率的变化; (d) 量子相干性随传输效率的变化

    Figure 4.  Experimental results of the two-mode squeezed states in lossy channels: (a) Dependence of PPT value on the number of thermal photons; (b) dependence of quantum coherence on the number of thermal photons; (c) dependence of PPT values on the transmission efficiency; (d) decoherence of quantum coherence in the lossy channels.

    Baidu
  • [1]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [2]

    Li Y C, Lin H Q 2016 Sci. Rep. 6 26365Google Scholar

    [3]

    Shi Y H, Shi H L, Wang X H, Hu M L, Liu S Y, Yang W L, Fan H 2020 J. Phys. A 53 085301Google Scholar

    [4]

    Hillery M 2016 Phys. Rev. A 93 012111Google Scholar

    [5]

    Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N, Adesso G 2016 Phys. Rev. Lett. 116 150502Google Scholar

    [6]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [7]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photonics 5 222Google Scholar

    [8]

    Giorda P, Allegra M 2016 J Phys. A-Math. Theor. 51 2Google Scholar

    [9]

    Zhang A, Zhang K, Zhou L, ZhangW 2018 Phys. Rev. Lett. 121 073602Google Scholar

    [10]

    Yuan Y, Hou Z, Zhao Y Y, Zhong H S, Xiang G Y, Li C F, Guo G C 2018 Opt. Express 26 004470Google Scholar

    [11]

    Wu K D, Hou Z, Zhong H S, Yuan Y, Guo G C 2017 Optica 4 454Google Scholar

    [12]

    Zhang M, Kang H J, Wang M H, Xu X L, Peng K C 2021 Photonics Res. 9 887Google Scholar

    [13]

    Tan K C, Volkoff T, Kwon H, Jeong H 2017 Phys. Rev. Lett. 119 190405Google Scholar

    [14]

    Tan K C, Jeong H 2018 Phys. Rev. Lett. 121 220401Google Scholar

    [15]

    Lostaglio M, Müller M P 2019 Phys. Rev. Lett. 123 020403Google Scholar

    [16]

    林银, 黄明达, 於亚飞, 张智明 2017 66 110301Google Scholar

    Lin Y, Huang M D, Yu Y F, Zhang Z M 2017 Acta Phys. Sin. 66 110301Google Scholar

    [17]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439Google Scholar

    [18]

    Feng X N, Wei L F 2017 Sci. Rep. 7 15492Google Scholar

    [19]

    Zhang Y R, Shao L H, Li Y, Fan H 2016 Phys. Rev. A 93 012334Google Scholar

    [20]

    Xu J 2016 Phys. Rev. A 93 032111Google Scholar

    [21]

    Buono D, Buono G, Petrillo G, Torre G, Zonzo G, Illuminati F 2016 arXiv: 1609.00913

    [22]

    周瑶瑶, 刘艳红, 闫智辉, 贾晓军 2021 70 104203Google Scholar

    Zhou Y Y, Liu Y H 2021 Acta Phys. Sin. 70 104203Google Scholar

    [23]

    Yan Z H, Qin J, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2021 Fundamental Research 1 43Google Scholar

    [24]

    Chou C W, Hume D B, Thorpe M J, Wineland D J, Rosenband T 2011 Phys. Rev. Lett. 106 160801Google Scholar

    [25]

    Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401Google Scholar

    [26]

    Liu S S, Lou Y B, Chen Y X, Jing J T 2022 Phys. Rev. Lett. 128 060503Google Scholar

    [27]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [28]

    Ma L X, Lei X, Yan J L, Li R Y, Chai T, Yan Z H, Jia X J, Xie C D, Peng K C 2022 Nat. Commun. 13 2368Google Scholar

    [29]

    Lei X, Ma L X, Yan J L, Zhou X Y, Yan Z H, Jia X J 2022 Adv. Phys. X 7 2060133Google Scholar

    [30]

    Liu S S, Lou Y B, Xin J, Jing J T 2018 Phys. Rev. Appl. 10 064046Google Scholar

    [31]

    Liu Y H, Huo N, Li J M, Cui L, Li X Y, Ou Z Y 2019 Opt. Express 27 11292Google Scholar

    [32]

    Yu J, Qin Y, Qin J L, Wang H, Yan Z H, Jia X J, Peng K C 2020 Phys. Rev. Appl. 13 024037Google Scholar

    [33]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472Google Scholar

    [34]

    Guo X S, Breum C R, Borregaard J, Izumi S, Larsen M V, Gehring T, Christandl M, Neergaard-Nielsen J S, Andersen U L 2020 Nat. Phys. 16 281Google Scholar

    [35]

    Bai S Y, An J H 2021 Phys. Rev. Lett. 127 083602Google Scholar

    [36]

    Yan Z H, Wu L, Jia X J, Xie C D, Peng K C 2021 Adv. Quantum Technol. 4 2100071Google Scholar

    [37]

    Streltsov A, Singh U, Dhar H S, Bera M N, Adesso G 2015 Phys. Rev. Lett. 115 020403Google Scholar

    [38]

    Chitambar E, Hsieh M H 2016 Phys. Rev. Lett. 117 020402Google Scholar

    [39]

    Deng X W, Liu Y, Wang M H, Su X L, Peng K C 2021 npj Quantum Inform. 7 65Google Scholar

    [40]

    Liu Y, Zheng K M, Kang H J, Han D M, Wang M H, Zhang L J, Su X L, Peng K C 2022 npj Quantum Inform. 8 38Google Scholar

    [41]

    Kang H J, Han D M, Wang N, Liu Y, Hao S H, Su X L 2021 Photonics Res. 9 1330Google Scholar

    [42]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [43]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321Google Scholar

    [44]

    Adesso G, Serafini A 2004 Phys. Rev. A 70 022318Google Scholar

    [45]

    Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663Google Scholar

    [46]

    Zhou Y Y, Yu J, Yan Z H, Jia X J, Zhang J, Xie C D, Peng K C 2018 Phys. Rev. Lett. 121 150502Google Scholar

    [47]

    Bougouffa S, Ficek Z 2020 Phys. Rev. A 102 043720Google Scholar

    [48]

    Xiong S J, Sun Z, Su Q P, Xi Z J, Yang C P 2021 Optica 8 1003Google Scholar

  • [1] Wang Yu, Wu Yi-Hao, Li Yi-Pu, Lu Kai-Xiang, Yi Tian-Cheng, Zhang Yun-Bo. Squeezing and evolution of single particle by frequency jumping in two-dimensional rotating harmonic. Acta Physica Sinica, 2024, 73(7): 074202. doi: 10.7498/aps.73.20231929
    [2] Zhao Hao, Feng Jin-Xia, Sun Jing-Ke, Li Yuan-Ji, Zhang Kuan-Shou. Entanglement robustness of continuous variable Einstein-Podolsky-Rosen-entangled state distributed over optical fiber channel. Acta Physica Sinica, 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [3] Dong Yao, Ji Ai-Ling, Zhang Guo-Feng. Evolution of quantum coherence of qutrit-qutrit system under correlated depolarizing channels. Acta Physica Sinica, 2022, 71(7): 070303. doi: 10.7498/aps.71.20212067
    [4] Zhai Ze-Hui, Hao Wen-Jing, Liu Jian-Li, Duan Xi-Ya. Filter cavity design and length measurement for preparing Schrödinger cat state. Acta Physica Sinica, 2020, 69(18): 184204. doi: 10.7498/aps.69.20200589
    [5] Tian Cong, Lu Xiang, Zhang Ying-Jie, Xia Yun-Jie. Control of maximum evolution speed of quantum states by two-mode entangled light field. Acta Physica Sinica, 2019, 68(15): 150301. doi: 10.7498/aps.68.20190385
    [6] Zuo Xiao-Jie, Sun Ying-Rong, Yan Zhi-Hui, Jia Xiao-Jun. High sensitivity quantum Michelson interferometer. Acta Physica Sinica, 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [7] Yi Tian-Cheng, Ding Yue-Ran, Ren Jie, Wang Yi-Min, You Wen-Long. Quantum coherence of XY model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2018, 67(14): 140303. doi: 10.7498/aps.67.20172755
    [8] Ye Shi-Qiang, Chen Xiao-Yu. Four-partite Bell inequalities based on quantum coherence. Acta Physica Sinica, 2017, 66(20): 200301. doi: 10.7498/aps.66.200301
    [9] Yang Li-Jun, Ma Teng, Sun Ke-Jia, Feng Xiao-Min. Amplification without population inversion in tree-level system driven by an additional microwave field. Acta Physica Sinica, 2015, 64(6): 064205. doi: 10.7498/aps.64.064205
    [10] Yu Xue-Cai, Wang Ping-He, Zhang Li-Xun. Atom movement in momentum dependent light dipole lattices. Acta Physica Sinica, 2013, 62(14): 144202. doi: 10.7498/aps.62.144202
    [11] Li Wei, Wang Yong-Gang, Yang Bo-Jun. Effect of losses for squeezed surface plasmons. Acta Physica Sinica, 2011, 60(2): 024203. doi: 10.7498/aps.60.024203
    [12] Ma Rui-Qiong, Li Yong-Fang, Shi Jian. Measurement of quantum states with incoherent light. Acta Physica Sinica, 2008, 57(9): 5593-5599. doi: 10.7498/aps.57.5593
    [13] Zhang Miao, Jia Huan-Yu, Ji Xiao-Hui, Si Kun, Wei Lian-Fu. Generation of squeezed quantum states of a single trapped cold ion. Acta Physica Sinica, 2008, 57(12): 7650-7657. doi: 10.7498/aps.57.7650
    [14] Hu Ju-Ju, Cai Shi-Hua, Wang Jian-Qiu, Ji Ying-Hua. Study on the influence of quantum state for phonon bath on the quantum behavior of mesoscopic circuit. Acta Physica Sinica, 2008, 57(1): 496-501. doi: 10.7498/aps.57.496
    [15] Zhang Wan-Juan, Wang Zhi-Guo, Xie Shuang-Yuan, Yang Ya-Ping. Interaction of an atom with a squeezed field of time-varying frequency. Acta Physica Sinica, 2007, 56(4): 2168-2174. doi: 10.7498/aps.56.2168
    [16] Jin Shuo, Xie Bing-Hao. Algebraic structure and squeezed state solutions of the XYZ antiferromagnetic Heisenberg model in an external magnetic field. Acta Physica Sinica, 2006, 55(8): 3880-3884. doi: 10.7498/aps.55.3880
    [17] Jia Xiao-Jun, Su Xiao-Long, Pan Qing, Xie Chang-De, Peng Kun-Chi. Experimental generation of two EPR entangled states with classical coherence. Acta Physica Sinica, 2005, 54(6): 2717-2722. doi: 10.7498/aps.54.2717
    [18] Song Tong-Qiang. Teleportation of quantum states by means of two-mode squeezed vacuum. Acta Physica Sinica, 2004, 53(10): 3358-3362. doi: 10.7498/aps.53.3358
    [19] Deng Wen-Ji, Xu Yun-Hua, Liu Ping. The uncertainty relations and minimum uncertainty states. Acta Physica Sinica, 2003, 52(12): 2961-2964. doi: 10.7498/aps.52.2961
    [20] Hao San-Ru, Wang Lu-Ya. . Acta Physica Sinica, 2000, 49(4): 610-614. doi: 10.7498/aps.49.610
Metrics
  • Abstract views:  4816
  • PDF Downloads:  170
  • Cited By: 0
Publishing process
  • Received Date:  07 October 2022
  • Accepted Date:  15 November 2022
  • Available Online:  19 November 2022
  • Published Online:  05 February 2023

/

返回文章
返回
Baidu
map